Recovering of gaps in the time series of CO2 concentration and air temperature using methods of mathematical statistics

V. S. Aleshnovskii, A. Bezrukova, V. K. Avilov, V. A. Gazaryan, Y. Kurbatova, O. Kuricheva, A. Chulichkov, N. E. Shapkina
{"title":"Recovering of gaps in the time series of CO2 concentration and air temperature using methods of mathematical statistics","authors":"V. S. Aleshnovskii, A. Bezrukova, V. K. Avilov, V. A. Gazaryan, Y. Kurbatova, O. Kuricheva, A. Chulichkov, N. E. Shapkina","doi":"10.55959/msu0579-9392.78.2330101","DOIUrl":null,"url":null,"abstract":"The article is devoted to the problem of recovering gaps in the data series of experimental long-term\ncontinuous high-frequency observations of carbon dioxide concentration and air temperature. The study was\ncarried out on the example of the results of observations of an automatic ecological and climatic station\nlocated in a tropical monsoon forest on the territory of south Vietnam (Dong Nai Nature Reserve). Omissions\nin the series of observations, as a rule, are random and are caused by technical malfunctions of the instrument\nbase. Correctly recovered series of observations allow us to estimate the temporal variability of the observed\nparameters on different time scales. Within the framework of this study, options for recovering the continuity\nof time series based on the methods of mathematical statistics - autoregression (ARIMA) and the method of\nlinear prediction were considered. A comparative analysis of the accuracy of restoring omissions by various\nmethods is given.","PeriodicalId":399279,"journal":{"name":"Seriya 3: Fizika, Astronomiya","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seriya 3: Fizika, Astronomiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55959/msu0579-9392.78.2330101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article is devoted to the problem of recovering gaps in the data series of experimental long-term continuous high-frequency observations of carbon dioxide concentration and air temperature. The study was carried out on the example of the results of observations of an automatic ecological and climatic station located in a tropical monsoon forest on the territory of south Vietnam (Dong Nai Nature Reserve). Omissions in the series of observations, as a rule, are random and are caused by technical malfunctions of the instrument base. Correctly recovered series of observations allow us to estimate the temporal variability of the observed parameters on different time scales. Within the framework of this study, options for recovering the continuity of time series based on the methods of mathematical statistics - autoregression (ARIMA) and the method of linear prediction were considered. A comparative analysis of the accuracy of restoring omissions by various methods is given.
利用数理统计方法恢复CO2浓度与气温时间序列的间隙
本文研究了二氧化碳浓度和气温的实验长期连续高频观测数据序列的空白恢复问题。本研究以位于越南南部(同奈自然保护区)热带季风森林的自动生态气候站的观测结果为例进行。通常,在一系列观测中出现的遗漏是随机的,是由仪器的技术故障引起的。正确恢复的一系列观测值使我们能够估计观测参数在不同时间尺度上的时间变异性。在本研究的框架内,考虑了基于数理统计-自回归(ARIMA)方法和线性预测方法恢复时间序列连续性的选择。对比分析了各种方法恢复遗漏的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信