Data Driven Gabor Wavelet Design for Face Recognition

L. Shen, L. Bai, Z. Ji
{"title":"Data Driven Gabor Wavelet Design for Face Recognition","authors":"L. Shen, L. Bai, Z. Ji","doi":"10.1109/CCPR.2008.55","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel data driven strategy for designing Gabor wavelets for face recognition. Each face image is represented through a multi-sensor scheme, which splits the 2D frequency plane into a number of channels and identifies the most significant units for extracting information. The representative units for a set of face images are then derived based on statistical analysis of these units. The locations of these units in the 2D frequency plane are then used to design the frequency and orientation of Gabor wavelets for face recognition. Once frequency and orientation are determined, the scale of a Gabor wavelet is determined by the sharpness of the filtered images. Two Gabor wavelet based face recognition algorithms are applied to demonstrate the advantages of the proposed strategy against conventional parameter settings. Experimental results show that the face recognition algorithms using the designed Gabor wavelets achieve better performance in terms of accuracy and efficiency. Since the strategy is based on the training data, it can be easily applied to designing Gabor wavelets for general pattern recognition task.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a novel data driven strategy for designing Gabor wavelets for face recognition. Each face image is represented through a multi-sensor scheme, which splits the 2D frequency plane into a number of channels and identifies the most significant units for extracting information. The representative units for a set of face images are then derived based on statistical analysis of these units. The locations of these units in the 2D frequency plane are then used to design the frequency and orientation of Gabor wavelets for face recognition. Once frequency and orientation are determined, the scale of a Gabor wavelet is determined by the sharpness of the filtered images. Two Gabor wavelet based face recognition algorithms are applied to demonstrate the advantages of the proposed strategy against conventional parameter settings. Experimental results show that the face recognition algorithms using the designed Gabor wavelets achieve better performance in terms of accuracy and efficiency. Since the strategy is based on the training data, it can be easily applied to designing Gabor wavelets for general pattern recognition task.
数据驱动Gabor小波设计用于人脸识别
本文提出了一种新的数据驱动策略来设计Gabor小波用于人脸识别。每个人脸图像通过多传感器方案表示,该方案将二维频率平面划分为多个通道,并识别最重要的单元以提取信息。然后根据这些单位的统计分析得出一组人脸图像的代表性单位。然后使用这些单元在二维频率平面中的位置来设计用于人脸识别的Gabor小波的频率和方向。一旦确定了频率和方向,Gabor小波的尺度由滤波后图像的清晰度决定。应用了两种基于Gabor小波的人脸识别算法来证明所提出的策略相对于传统参数设置的优势。实验结果表明,基于Gabor小波的人脸识别算法在准确率和效率方面都取得了较好的效果。由于该策略是基于训练数据的,因此可以很容易地应用于设计用于一般模式识别任务的Gabor小波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信