Automatic batik motifs classification using various combinations of SIFT features moments and k-Nearest Neighbor

Iwan Setyawan, Ivanna K. Timotius, Marchellius Kalvin
{"title":"Automatic batik motifs classification using various combinations of SIFT features moments and k-Nearest Neighbor","authors":"Iwan Setyawan, Ivanna K. Timotius, Marchellius Kalvin","doi":"10.1109/ICITEED.2015.7408954","DOIUrl":null,"url":null,"abstract":"Batik cloth is Indonesia's national heritage. Across the archipelago, there are numerous patterns and motifs of batik, each having its own meaning and cultural significance. In this paper, we present the results of our investigation of various combinations of SIFT features moments used in automatic classification of batik motifs. The classification method used in this paper is the k-Nearest Neighbor. Our experiments show that the best performance of the system is obtained using feature vectors of length 7, yielding a classification accuracy rate of 31.43% for 7 classes of batik motifs with no batik motif classes having zero classification accuracy rate. Furthermore, our experiments suggest that the feature moment that seems to be the best for the classification process is the μc, while the feature moment that seems to hinder the classification process is the σc2.","PeriodicalId":207985,"journal":{"name":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2015.7408954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Batik cloth is Indonesia's national heritage. Across the archipelago, there are numerous patterns and motifs of batik, each having its own meaning and cultural significance. In this paper, we present the results of our investigation of various combinations of SIFT features moments used in automatic classification of batik motifs. The classification method used in this paper is the k-Nearest Neighbor. Our experiments show that the best performance of the system is obtained using feature vectors of length 7, yielding a classification accuracy rate of 31.43% for 7 classes of batik motifs with no batik motif classes having zero classification accuracy rate. Furthermore, our experiments suggest that the feature moment that seems to be the best for the classification process is the μc, while the feature moment that seems to hinder the classification process is the σc2.
基于SIFT特征矩和k近邻的蜡染图案自动分类
蜡染布是印尼的民族遗产。在整个群岛,有许多蜡染图案和图案,每一个都有自己的意义和文化意义。在本文中,我们提出了我们的研究结果,各种组合的SIFT特征矩用于蜡染图案的自动分类。本文使用的分类方法是k近邻。我们的实验表明,使用长度为7的特征向量获得了系统的最佳性能,对7类蜡染图案的分类准确率为31.43%,没有蜡染图案的分类准确率为零。此外,我们的实验表明,对分类过程最有利的特征矩是μc,而阻碍分类过程的特征矩是σc2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信