A real time system for dynamic hand gesture recognition with a depth sensor

A. Kurakin, Z. Zhang, Z. Liu
{"title":"A real time system for dynamic hand gesture recognition with a depth sensor","authors":"A. Kurakin, Z. Zhang, Z. Liu","doi":"10.5281/ZENODO.42817","DOIUrl":null,"url":null,"abstract":"Recent advances in depth sensing provide exciting opportunities for the development of new methods for human activity understanding. Yet, little work has been done in the area of hand gesture recognition which has many practical applications. In this paper we propose a real-time system for dynamic hand gesture recognition. It is fully automatic and robust to variations in speed and style as well as in hand orientations. Our approach is based on action graph, which shares similar robust properties with standard HMM but requires less training data by allowing states shared among different gestures. To deal with hand orientations, we have developed a new technique for hand segmentation and orientation normalization. The proposed system is evaluated on a challenging dataset of twelve dynamic American Sign Language (ASL) gestures.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"286","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 286

Abstract

Recent advances in depth sensing provide exciting opportunities for the development of new methods for human activity understanding. Yet, little work has been done in the area of hand gesture recognition which has many practical applications. In this paper we propose a real-time system for dynamic hand gesture recognition. It is fully automatic and robust to variations in speed and style as well as in hand orientations. Our approach is based on action graph, which shares similar robust properties with standard HMM but requires less training data by allowing states shared among different gestures. To deal with hand orientations, we have developed a new technique for hand segmentation and orientation normalization. The proposed system is evaluated on a challenging dataset of twelve dynamic American Sign Language (ASL) gestures.
基于深度传感器的动态手势识别实时系统
深度传感的最新进展为开发理解人类活动的新方法提供了令人兴奋的机会。然而,在实际应用较多的手势识别领域,研究还很少。本文提出了一种实时动态手势识别系统。它是全自动和健壮的变化在速度和风格,以及在手的方向。我们的方法基于动作图,它与标准HMM具有相似的鲁棒性,但通过允许不同手势之间共享状态,需要更少的训练数据。为了处理手的方向,我们开发了一种新的手的分割和方向归一化技术。该系统在12个动态美国手语(ASL)手势的挑战性数据集上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信