Fraser K. Coutts, D. Gaglione, C. Clemente, Gang Li, I. Proudler, J. Soraghan
{"title":"Label Consistent K-SVD for sparse micro-Doppler classification","authors":"Fraser K. Coutts, D. Gaglione, C. Clemente, Gang Li, I. Proudler, J. Soraghan","doi":"10.1109/ICDSP.2015.7251836","DOIUrl":null,"url":null,"abstract":"Secondary motions of targets observed by radar introduce non-stationary returns containing the so-called micro-Doppler information. This is characterizing information that can be exploited to enhance automatic target recognition systems. In this paper, the challenge of classifying the micro-Doppler return of helicopters is addressed. A robust dictionary learning algorithm, Label Consistent K-SVD (LC-KSVD), is applied to identify effectively and efficiently helicopters. The effectiveness of the proposed algorithm is demonstrated on both synthetic and real radar data.","PeriodicalId":216293,"journal":{"name":"2015 IEEE International Conference on Digital Signal Processing (DSP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2015.7251836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Secondary motions of targets observed by radar introduce non-stationary returns containing the so-called micro-Doppler information. This is characterizing information that can be exploited to enhance automatic target recognition systems. In this paper, the challenge of classifying the micro-Doppler return of helicopters is addressed. A robust dictionary learning algorithm, Label Consistent K-SVD (LC-KSVD), is applied to identify effectively and efficiently helicopters. The effectiveness of the proposed algorithm is demonstrated on both synthetic and real radar data.