A long term vision for long-range ship-free deep ocean operations: Persistent presence through coordination of Autonomous Surface Vehicles and Autonomous Underwater Vehicles
C. German, M. Jakuba, J. Kinsey, J. Partan, S. Suman, A. Belani, D. Yoerger
{"title":"A long term vision for long-range ship-free deep ocean operations: Persistent presence through coordination of Autonomous Surface Vehicles and Autonomous Underwater Vehicles","authors":"C. German, M. Jakuba, J. Kinsey, J. Partan, S. Suman, A. Belani, D. Yoerger","doi":"10.1109/AUV.2012.6380753","DOIUrl":null,"url":null,"abstract":"We outline a vision for persistent and/or long-range seafloor exploration and monitoring utilizing autonomous surface vessels (ASVs) and autonomous underwater vehicles (AUVs) to conduct coordinated autonomous surveys. Three types of surveys are envisioned: a) Autonomous tending of deep-diving AUVs: deployed from a research vessel, the ASV would act as a force-multiplier, watching over the AUV to provide operators and scientists with real-time data and re-tasking capabilities, while freeing the ship to conduct other over-the-side operations; b) Ridge-segment-scale (100 km) autonomous hydrothermal exploration: combined with conventional gliders or long-endurance AUVs, an ASV could tend a fleet of underwater assets equipped with low-power chemical sensors for mapping hydrothermal plumes and locating seafloor hydrothermal venting. Operators would control the system via satellite, such that a support ship would be needed only for initial deployment and final recovery 1-2 months later; and c) Basin-scale (10,000 km) autonomous surveys: a purpose-built autonomous surface vessel (mother-ship) with abilities up to and including autonomous deployment, recovery, and re-charge of subsea robots could explore or monitor the ocean and seafloor on the oceanic basin scale at a fraction of the cost of a global-class research vessel. In this paper we outline our long term conceptual vision, discuss some preliminary enabling technology developments that we have already achieved and set out a roadmap for progress anticipated over the next 2-3 years. We present an overview of the system architecture for autonomous tending along with some preliminary field work.","PeriodicalId":340133,"journal":{"name":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2012.6380753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61
Abstract
We outline a vision for persistent and/or long-range seafloor exploration and monitoring utilizing autonomous surface vessels (ASVs) and autonomous underwater vehicles (AUVs) to conduct coordinated autonomous surveys. Three types of surveys are envisioned: a) Autonomous tending of deep-diving AUVs: deployed from a research vessel, the ASV would act as a force-multiplier, watching over the AUV to provide operators and scientists with real-time data and re-tasking capabilities, while freeing the ship to conduct other over-the-side operations; b) Ridge-segment-scale (100 km) autonomous hydrothermal exploration: combined with conventional gliders or long-endurance AUVs, an ASV could tend a fleet of underwater assets equipped with low-power chemical sensors for mapping hydrothermal plumes and locating seafloor hydrothermal venting. Operators would control the system via satellite, such that a support ship would be needed only for initial deployment and final recovery 1-2 months later; and c) Basin-scale (10,000 km) autonomous surveys: a purpose-built autonomous surface vessel (mother-ship) with abilities up to and including autonomous deployment, recovery, and re-charge of subsea robots could explore or monitor the ocean and seafloor on the oceanic basin scale at a fraction of the cost of a global-class research vessel. In this paper we outline our long term conceptual vision, discuss some preliminary enabling technology developments that we have already achieved and set out a roadmap for progress anticipated over the next 2-3 years. We present an overview of the system architecture for autonomous tending along with some preliminary field work.