Research on Facial Expression Recognition Algorithm Based on Convolutional Neural Network

Xiaobo Zhang, Yuliang Yang, Linhao Zhang, Wanchong Li, Shuai Dang, Peng Wang, Mengyu Zhu
{"title":"Research on Facial Expression Recognition Algorithm Based on Convolutional Neural Network","authors":"Xiaobo Zhang, Yuliang Yang, Linhao Zhang, Wanchong Li, Shuai Dang, Peng Wang, Mengyu Zhu","doi":"10.1109/WOCC.2019.8770616","DOIUrl":null,"url":null,"abstract":"A network model for facial expression recognition is designed and named DI-FERNet in this paper. The network uses depth-wise separable convolution, dilated convolution and residual module to build the network structure. This paper uses MTCNN to perform face alignment processing on the pictures in the dataset. A large number of experiments are carried out on the selected expression datasets KDEF and RAF. The test accuracy on KDEF is 97.2% and on the RAF is 77.1%.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A network model for facial expression recognition is designed and named DI-FERNet in this paper. The network uses depth-wise separable convolution, dilated convolution and residual module to build the network structure. This paper uses MTCNN to perform face alignment processing on the pictures in the dataset. A large number of experiments are carried out on the selected expression datasets KDEF and RAF. The test accuracy on KDEF is 97.2% and on the RAF is 77.1%.
基于卷积神经网络的面部表情识别算法研究
本文设计了一个人脸表情识别网络模型,命名为DI-FERNet。该网络采用深度可分卷积、扩展卷积和残差模块构建网络结构。本文利用MTCNN对数据集中的图片进行人脸对齐处理。在选择的表达数据集KDEF和RAF上进行了大量的实验。KDEF的测试精度为97.2%,RAF的测试精度为77.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信