Tuning Automatic Summarization for Incident Report Visualization

Nathan Danneman, R. Gove
{"title":"Tuning Automatic Summarization for Incident Report Visualization","authors":"Nathan Danneman, R. Gove","doi":"10.1109/PacificVis53943.2022.00031","DOIUrl":null,"url":null,"abstract":"We present a machine learning approach to improve the accuracy of summarized incident report visualizations for cyber security. We extend a recent incident report summarization method by training a Bayesian hierarchical model to optimize the summarization algorithm's weights. We also train a flat model and a neural network as alternative models to compare against our hierarchical model. Summaries generated by our hierarchical model achieve higher accuracy than the other methods, with an AUC 0.2 higher than the unweighted method while achieving comparable summarization size. We further demonstrate that visualizations of the hierarchical model's summaries are at least as useful the unweighted method's summaries, and possibly more useful.","PeriodicalId":117284,"journal":{"name":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis53943.2022.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a machine learning approach to improve the accuracy of summarized incident report visualizations for cyber security. We extend a recent incident report summarization method by training a Bayesian hierarchical model to optimize the summarization algorithm's weights. We also train a flat model and a neural network as alternative models to compare against our hierarchical model. Summaries generated by our hierarchical model achieve higher accuracy than the other methods, with an AUC 0.2 higher than the unweighted method while achieving comparable summarization size. We further demonstrate that visualizations of the hierarchical model's summaries are at least as useful the unweighted method's summaries, and possibly more useful.
调整事件报告可视化的自动摘要
我们提出了一种机器学习方法来提高网络安全总结事件报告可视化的准确性。我们通过训练贝叶斯层次模型来优化摘要算法的权重,扩展了最近的事件报告摘要方法。我们还训练了一个平面模型和一个神经网络作为替代模型,与我们的分层模型进行比较。我们的分层模型生成的摘要比其他方法具有更高的准确性,在获得相当的摘要大小的同时,其AUC比未加权方法高0.2。我们进一步证明,分层模型的可视化总结至少与非加权方法的总结一样有用,甚至可能更有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信