Partial-Order Reduction for Performance Analysis of Max-Plus Timed Systems

Bram van der Sanden, M. Geilen, M. Reniers, T. Basten
{"title":"Partial-Order Reduction for Performance Analysis of Max-Plus Timed Systems","authors":"Bram van der Sanden, M. Geilen, M. Reniers, T. Basten","doi":"10.1109/ACSD.2018.00007","DOIUrl":null,"url":null,"abstract":"This paper presents a partial-order reduction method for performance analysis of max-plus timed systems. A max-plus timed system is a network of automata, where the timing behavior of deterministic system tasks (events in an automaton) is captured in (max, +) matrices. These tasks can be characterized in various formalisms like synchronous data flow, Petri nets, or real-time calculus. The timing behavior of the system is captured in a (max, +) state space, calculated from the composition of the automata. This state space may exhibit redundant interleaving with respect to performance aspects like throughput or latency. The goal of this work is to obtain a smaller state space to speed up performance analysis. To achieve this, we first formalize state-space equivalence with respect to throughput and latency analysis. Then, we present a way to compute a reduced composition directly from the specification. This yields a smaller equivalent state space. We perform the reduction on-the-fly, without first computing the full composition. Experiments show the effectiveness of the method on a set of realistic manufacturing system models.","PeriodicalId":242721,"journal":{"name":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2018.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a partial-order reduction method for performance analysis of max-plus timed systems. A max-plus timed system is a network of automata, where the timing behavior of deterministic system tasks (events in an automaton) is captured in (max, +) matrices. These tasks can be characterized in various formalisms like synchronous data flow, Petri nets, or real-time calculus. The timing behavior of the system is captured in a (max, +) state space, calculated from the composition of the automata. This state space may exhibit redundant interleaving with respect to performance aspects like throughput or latency. The goal of this work is to obtain a smaller state space to speed up performance analysis. To achieve this, we first formalize state-space equivalence with respect to throughput and latency analysis. Then, we present a way to compute a reduced composition directly from the specification. This yields a smaller equivalent state space. We perform the reduction on-the-fly, without first computing the full composition. Experiments show the effectiveness of the method on a set of realistic manufacturing system models.
最大+定时系统性能分析的偏阶约简
本文提出了一种用于最大加时间系统性能分析的偏序约简方法。max-plus定时系统是一个自动机网络,其中确定性系统任务(自动机中的事件)的定时行为在(max, +)矩阵中被捕获。这些任务可以用各种形式来描述,比如同步数据流、Petri网或实时演算。系统的定时行为被捕获在一个(max, +)状态空间中,由自动机的组成计算。这个状态空间可能在吞吐量或延迟等性能方面表现出冗余交错。这项工作的目标是获得更小的状态空间,以加快性能分析。为了实现这一点,我们首先形式化关于吞吐量和延迟分析的状态空间等价。然后,我们提出了一种直接从规范中计算简化组合的方法。这将产生更小的等效状态空间。我们即时执行还原,而不首先计算完整的构图。实验证明了该方法在一组实际制造系统模型上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信