Parameter Identification of Nonlinear Systems Using a Particle Swarm Optimization Approach

W. Chang, Jun-Ping Cheng, Ming-Chieh Hsu, L. Tsai
{"title":"Parameter Identification of Nonlinear Systems Using a Particle Swarm Optimization Approach","authors":"W. Chang, Jun-Ping Cheng, Ming-Chieh Hsu, L. Tsai","doi":"10.1109/ICNC.2012.24","DOIUrl":null,"url":null,"abstract":"This paper applies a particle swarm optimization (PSO) approach to the parameter identification for a class of nonlinear systems. In the PSO optimization process, the unknown system parameters are arranged in the form of a parameter vector (i.e. a particle), and the PSO algorithm employs the velocity updating and position updating formulas to an initial population, which is constituted by a great number of particles, such that the excellent particle is generated. The proposed algorithm manipulates the parameter vectors directly as real numbers rather than binary strings. Therefore, to implement the PSO algorithm in computer codes becomes fairly straightforward. In this study, the PSO algorithm is applied to estimate the parameters of the Genesio-Tesi nonlinear chaotic systems. The estimation performance of the PSO algorithm is verified by examining different sets of random initial populations under the presence of measurement noises. The simulation results reveal that the PSO algorithm provides a simple and effective means of solving parameter estimation problem of nonlinear systems.","PeriodicalId":442973,"journal":{"name":"2012 Third International Conference on Networking and Computing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper applies a particle swarm optimization (PSO) approach to the parameter identification for a class of nonlinear systems. In the PSO optimization process, the unknown system parameters are arranged in the form of a parameter vector (i.e. a particle), and the PSO algorithm employs the velocity updating and position updating formulas to an initial population, which is constituted by a great number of particles, such that the excellent particle is generated. The proposed algorithm manipulates the parameter vectors directly as real numbers rather than binary strings. Therefore, to implement the PSO algorithm in computer codes becomes fairly straightforward. In this study, the PSO algorithm is applied to estimate the parameters of the Genesio-Tesi nonlinear chaotic systems. The estimation performance of the PSO algorithm is verified by examining different sets of random initial populations under the presence of measurement noises. The simulation results reveal that the PSO algorithm provides a simple and effective means of solving parameter estimation problem of nonlinear systems.
非线性系统参数辨识的粒子群优化方法
本文将粒子群优化方法应用于一类非线性系统的参数辨识。在粒子群优化过程中,将未知的系统参数以参数向量(即粒子)的形式排列,粒子群算法将速度更新和位置更新公式应用到由大量粒子组成的初始种群中,从而生成优秀的粒子。该算法将参数向量直接处理为实数而不是二进制字符串。因此,在计算机代码中实现粒子群算法变得相当简单。本研究将粒子群算法应用于Genesio-Tesi非线性混沌系统的参数估计。通过检测存在测量噪声的不同随机初始总体,验证了粒子群算法的估计性能。仿真结果表明,粒子群算法为解决非线性系统参数估计问题提供了一种简单有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信