A non Invasive Brain-Computer-Interface for Service Robotics

F. Ahmed, Hashim Iqbal, Ahmed Nouman, H. F. Maqbool, Saqib Zafar, M. Saleem
{"title":"A non Invasive Brain-Computer-Interface for Service Robotics","authors":"F. Ahmed, Hashim Iqbal, Ahmed Nouman, H. F. Maqbool, Saqib Zafar, M. Saleem","doi":"10.1109/ICAI58407.2023.10136672","DOIUrl":null,"url":null,"abstract":"A Brain-Computer Interface (BCI) enables individuals to control a system solely through their brain activity, without relying on physical movement. These interfaces have numerous applications, particularly in assisting individuals with paralysis. Our research paper details a BCI interface that can classify and control seven wheelchair movements: forward, backward, left, right, stair climbing upwards, stair climbing downwards, and stop. We collected raw signal data using the electroencephalog-raphy (EEG) technique from healthy volunteers, which we then filter before feeding into the feature extraction and classification stages. We evaluated our approach using three classification algorithms: Convolution Neural Network (CNN), Support Vector Machines (SVM), and Random Forest Classifier, and compared their performance. Our experimental results demonstrate that our proposed approach is highly promising for implementing BCI, with a classification accuracy of 99% using a Random Forest Classifier.","PeriodicalId":161809,"journal":{"name":"2023 3rd International Conference on Artificial Intelligence (ICAI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI58407.2023.10136672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Brain-Computer Interface (BCI) enables individuals to control a system solely through their brain activity, without relying on physical movement. These interfaces have numerous applications, particularly in assisting individuals with paralysis. Our research paper details a BCI interface that can classify and control seven wheelchair movements: forward, backward, left, right, stair climbing upwards, stair climbing downwards, and stop. We collected raw signal data using the electroencephalog-raphy (EEG) technique from healthy volunteers, which we then filter before feeding into the feature extraction and classification stages. We evaluated our approach using three classification algorithms: Convolution Neural Network (CNN), Support Vector Machines (SVM), and Random Forest Classifier, and compared their performance. Our experimental results demonstrate that our proposed approach is highly promising for implementing BCI, with a classification accuracy of 99% using a Random Forest Classifier.
服务机器人的非侵入性脑机接口
脑机接口(BCI)使个人能够仅通过他们的大脑活动来控制系统,而不依赖于身体运动。这些接口有许多应用,特别是在帮助瘫痪的个人方面。我们的研究论文详细介绍了一个BCI接口,它可以分类和控制七种轮椅运动:向前、向后、向左、向右、向上爬楼梯、向下爬楼梯和停止。我们使用脑电图(EEG)技术收集健康志愿者的原始信号数据,然后在输入特征提取和分类阶段之前对其进行过滤。我们使用卷积神经网络(CNN)、支持向量机(SVM)和随机森林分类器这三种分类算法评估了我们的方法,并比较了它们的性能。我们的实验结果表明,我们提出的方法非常有希望实现BCI,使用随机森林分类器的分类准确率达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信