Relevant Keyword Collection using Click-log

Kwang-Mo Ahn, Young-Hoon Seo, Heo Jeong, C. Lee, Myung-Gil Jang
{"title":"Relevant Keyword Collection using Click-log","authors":"Kwang-Mo Ahn, Young-Hoon Seo, Heo Jeong, C. Lee, Myung-Gil Jang","doi":"10.3745/KIPSTB.2012.19B.2.149","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to collect relevant keywords from clicklog data including user`s keywords and URLs accessed using them. Our main hyphothesis is that two or more different keywords may be relevant if users access same URLs using them. Also, they should have higher relationship when the more same URLs are accessed using them. To validate our idea, we collect relevant keywords from clicklog data which is offered by a portal site. As a result, our experiment shows 89.32% precision when we define answer set to only semantically same words, and 99.03% when we define answer set to broader sense. Our approach has merits that it is independent on language and collects relevant words from real world data.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.2.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to collect relevant keywords from clicklog data including user`s keywords and URLs accessed using them. Our main hyphothesis is that two or more different keywords may be relevant if users access same URLs using them. Also, they should have higher relationship when the more same URLs are accessed using them. To validate our idea, we collect relevant keywords from clicklog data which is offered by a portal site. As a result, our experiment shows 89.32% precision when we define answer set to only semantically same words, and 99.03% when we define answer set to broader sense. Our approach has merits that it is independent on language and collects relevant words from real world data.
使用Click-log收集相关关键字
本文的目的是从点击日志数据中收集相关的关键字,包括用户的关键字和使用它们访问的url。我们的主要假设是,如果用户使用两个或多个不同的关键字访问相同的url,它们可能是相关的。此外,当使用它们访问更多相同的url时,它们应该具有更高的关系。为了验证我们的想法,我们从门户网站提供的点击记录数据中收集相关关键字。因此,当我们将答案集定义为语义相同的词时,我们的实验显示准确率为89.32%,当我们将答案集定义为更广泛的意义时,我们的实验显示准确率为99.03%。我们的方法的优点是它独立于语言,并从现实世界的数据中收集相关的单词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信