S. Rahman, Jichi Guo, Akshatha Bhat, Carlos D. Garcia, Majedul Haque Sujon, Qing Yi, C. Liao, D. Quinlan
{"title":"Studying the impact of application-level optimizations on the power consumption of multi-core architectures","authors":"S. Rahman, Jichi Guo, Akshatha Bhat, Carlos D. Garcia, Majedul Haque Sujon, Qing Yi, C. Liao, D. Quinlan","doi":"10.1145/2212908.2212927","DOIUrl":null,"url":null,"abstract":"This paper studies the overall system power variations of two multi-core architectures, an 8-core Intel and a 32-core AMD workstation, while using these machines to execute a wide variety of sequential and multi-threaded benchmarks using varying compiler optimization settings and runtime configurations. Our extensive experimental study provides insights for answering two questions: 1) what degrees of impact can application level optimizations have on reducing the overall system power consumption of modern CMP architectures; and 2) what strategies can compilers and application developers adopt to achieve a balanced performance and power efficiency for applications from a variety of science and embedded systems domains.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This paper studies the overall system power variations of two multi-core architectures, an 8-core Intel and a 32-core AMD workstation, while using these machines to execute a wide variety of sequential and multi-threaded benchmarks using varying compiler optimization settings and runtime configurations. Our extensive experimental study provides insights for answering two questions: 1) what degrees of impact can application level optimizations have on reducing the overall system power consumption of modern CMP architectures; and 2) what strategies can compilers and application developers adopt to achieve a balanced performance and power efficiency for applications from a variety of science and embedded systems domains.