Object tracking with occlusion handling using mean shift, Kalman filter and Edge Histogram

Iman Iraei, K. Faez
{"title":"Object tracking with occlusion handling using mean shift, Kalman filter and Edge Histogram","authors":"Iman Iraei, K. Faez","doi":"10.1109/PRIA.2015.7161637","DOIUrl":null,"url":null,"abstract":"This paper propose an algorithm that uses Mean Shift and Kalman Filter for object tracking. Also this method uses Edge Histogram for occlusion handling. Firstly, we use Mean Shift algorithm to obtain center of desired object. But the robust of tracking is not very well, so we use Kalman Filter to improve the effect of tracking. Bhattacharyya coefficient and Edge Histogram are used for finding out both partial and full occlusions. With this approach we can track the object more accurately. The results prove that the robust of tracking is very well.","PeriodicalId":163817,"journal":{"name":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2015.7161637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper propose an algorithm that uses Mean Shift and Kalman Filter for object tracking. Also this method uses Edge Histogram for occlusion handling. Firstly, we use Mean Shift algorithm to obtain center of desired object. But the robust of tracking is not very well, so we use Kalman Filter to improve the effect of tracking. Bhattacharyya coefficient and Edge Histogram are used for finding out both partial and full occlusions. With this approach we can track the object more accurately. The results prove that the robust of tracking is very well.
使用均值移位、卡尔曼滤波和边缘直方图进行遮挡处理的目标跟踪
提出了一种基于Mean Shift和卡尔曼滤波的目标跟踪算法。该方法还使用边缘直方图进行遮挡处理。首先,利用Mean Shift算法获取目标的中心;但是跟踪的鲁棒性不是很好,所以我们采用卡尔曼滤波来提高跟踪效果。Bhattacharyya系数和边缘直方图用于发现部分和完全闭塞。用这种方法我们可以更准确地跟踪目标。结果表明,该方法具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信