Single-Channel Speech Separation Based on Gaussian Process Regression

Nguyen-Khang Le, Sih-Huei Chen, Tzu-Chiang Tai, Jia-Ching Wang
{"title":"Single-Channel Speech Separation Based on Gaussian Process Regression","authors":"Nguyen-Khang Le, Sih-Huei Chen, Tzu-Chiang Tai, Jia-Ching Wang","doi":"10.1109/ISM.2018.00040","DOIUrl":null,"url":null,"abstract":"Gaussian process (GP) is a flexible kernel-based learning method which has found widespread applications in signal processing. In this paper, a supervised approach is proposed to handle single-channel speech separation (SCSS) problem. We focus on modeling a nonlinear mapping between mixed and clean speeches based on GP regression, in which reconstructed audio signal is estimated by the predictive mean of GP model. The nonlinear conjugate gradient method was utilized to perform the hyper-parameter optimization. The experiment on a subset of TIMIT speech dataset is carried out to confirm the validity of the proposed approach.","PeriodicalId":308698,"journal":{"name":"2018 IEEE International Symposium on Multimedia (ISM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gaussian process (GP) is a flexible kernel-based learning method which has found widespread applications in signal processing. In this paper, a supervised approach is proposed to handle single-channel speech separation (SCSS) problem. We focus on modeling a nonlinear mapping between mixed and clean speeches based on GP regression, in which reconstructed audio signal is estimated by the predictive mean of GP model. The nonlinear conjugate gradient method was utilized to perform the hyper-parameter optimization. The experiment on a subset of TIMIT speech dataset is carried out to confirm the validity of the proposed approach.
基于高斯过程回归的单通道语音分离
高斯过程是一种灵活的基于核的学习方法,在信号处理中得到了广泛的应用。本文提出了一种有监督的方法来处理单通道语音分离问题。本文重点研究了基于GP回归的混合和干净语音的非线性映射建模,其中重构的音频信号通过GP模型的预测均值进行估计。采用非线性共轭梯度法进行超参数优化。在TIMIT语音数据集的一个子集上进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信