BRAHMA: An intelligent framework for automated scaling of streaming and deadline-critical workflows

A. Atrey, Hendrik Moens, Gregory van Seghbroeck, B. Volckaert, F. Turck
{"title":"BRAHMA: An intelligent framework for automated scaling of streaming and deadline-critical workflows","authors":"A. Atrey, Hendrik Moens, Gregory van Seghbroeck, B. Volckaert, F. Turck","doi":"10.1109/CNSM.2016.7818420","DOIUrl":null,"url":null,"abstract":"The prevalent use of multi-component, multi-tenant models for building novel Software-as-a-Service (SaaS) applications has resulted in wide-spread research on automatic scaling of the resultant complex application workflows. In this paper, we propose a holistic solution to Automatic Workflow Scaling under the combined presence of Streaming and Deadline-critical workflows, called AWS-SD. To solve the AWS-SD problem, we propose a framework BRAHMA, that learns workflow behavior to build a knowledge-base and leverages this info to perform intelligent automated scaling decisions. We propose and evaluate different resource provisioning algorithms through CloudSim. Our results on time-varying workloads show that the proposed algorithms are effective and produce good cost-quality trade-offs while preventing deadline violations. Empirically, the proposed hybrid algorithm — combining learning and monitoring, is able to restrict deadline violations to a small fraction (3–5%), while only suffering a marginal increase in average cost per component of 1–2% over our baseline naïve algorithm, which provides the least costly provisioning but suffers from a large number (35–45%) of deadline violations.","PeriodicalId":334604,"journal":{"name":"2016 12th International Conference on Network and Service Management (CNSM)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSM.2016.7818420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The prevalent use of multi-component, multi-tenant models for building novel Software-as-a-Service (SaaS) applications has resulted in wide-spread research on automatic scaling of the resultant complex application workflows. In this paper, we propose a holistic solution to Automatic Workflow Scaling under the combined presence of Streaming and Deadline-critical workflows, called AWS-SD. To solve the AWS-SD problem, we propose a framework BRAHMA, that learns workflow behavior to build a knowledge-base and leverages this info to perform intelligent automated scaling decisions. We propose and evaluate different resource provisioning algorithms through CloudSim. Our results on time-varying workloads show that the proposed algorithms are effective and produce good cost-quality trade-offs while preventing deadline violations. Empirically, the proposed hybrid algorithm — combining learning and monitoring, is able to restrict deadline violations to a small fraction (3–5%), while only suffering a marginal increase in average cost per component of 1–2% over our baseline naïve algorithm, which provides the least costly provisioning but suffers from a large number (35–45%) of deadline violations.
BRAHMA:一个智能框架,用于自动扩展流和截止日期关键工作流程
普遍使用多组件、多租户模型来构建新型软件即服务(SaaS)应用程序,这导致了对由此产生的复杂应用程序工作流的自动伸缩的广泛研究。在本文中,我们提出了一个整体的解决方案,以自动工作流扩展流和截止日期关键型工作流的组合存在,称为AWS-SD。为了解决AWS-SD问题,我们提出了一个框架BRAHMA,它可以学习工作流行为来构建知识库,并利用这些信息来执行智能的自动扩展决策。我们通过CloudSim提出并评估了不同的资源分配算法。我们在时变工作负载上的结果表明,所提出的算法是有效的,并且在防止违反截止日期的同时产生良好的成本-质量权衡。根据经验,提出的混合算法-结合学习和监控,能够将截止日期违规限制在一小部分(3-5%),而每个组件的平均成本仅比我们的基线算法增加1-2%,该算法提供了成本最低的配置,但遭受了大量(35-45%)的截止日期违规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信