Life Cycle Assessment of Torrefied Algal Biomass

D. R. Rivera, A. Culaba, A. Ubando
{"title":"Life Cycle Assessment of Torrefied Algal Biomass","authors":"D. R. Rivera, A. Culaba, A. Ubando","doi":"10.1109/HNICEM.2018.8666259","DOIUrl":null,"url":null,"abstract":"Biomass from microalgae and its residues can be burned directly, however it cannot be directly utilized to replace coal in the industry for power generation. This is due to its lower heating value as compared to coal. To solve this issue, a thermochemical process known as torrefaction is used. This increases the heating value of microalgal biomass to approximately the same level of coal. However, in order to consider for a large-scale production, the likely environmental impact of the prospective industrial scale should be gauged. Therefore, this paper presents a life cycle assessment of the production of torrefied microalgal biomass. Secondary data from the literature are then obtained and analyzed using a commercially available life cycle assessment tool SimaPro 8.5.2. Upon grouping the environmental impacts to three damage category, Damage to Human Health resulted to be the highest in all the production stages with 66.6% as compared to damage to Resources (29.2%) and Ecosystems (4.22%). The production stages are also weighed and the result revealed that the cultivation stage accounts for the highest combined environmental impacts with 65.7%. Upon scrutinizing the cultivation stage, large burden came from the use of fertilizers and electricity. Therefore, cultivation using inorganic fertilizers should be lessened. The use of waste nutrients from industries can be considered (organic fertilizers). Although microalgae have the potential for carbon capture and the torrefied algal biomass and its residue as a replacement for coal, the production process into its conversion to solid fuel using the electricity requires a suitable approach. Identifying other sources of energy and new technology should be addressed to help reduce the energy demand.","PeriodicalId":426103,"journal":{"name":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2018.8666259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Biomass from microalgae and its residues can be burned directly, however it cannot be directly utilized to replace coal in the industry for power generation. This is due to its lower heating value as compared to coal. To solve this issue, a thermochemical process known as torrefaction is used. This increases the heating value of microalgal biomass to approximately the same level of coal. However, in order to consider for a large-scale production, the likely environmental impact of the prospective industrial scale should be gauged. Therefore, this paper presents a life cycle assessment of the production of torrefied microalgal biomass. Secondary data from the literature are then obtained and analyzed using a commercially available life cycle assessment tool SimaPro 8.5.2. Upon grouping the environmental impacts to three damage category, Damage to Human Health resulted to be the highest in all the production stages with 66.6% as compared to damage to Resources (29.2%) and Ecosystems (4.22%). The production stages are also weighed and the result revealed that the cultivation stage accounts for the highest combined environmental impacts with 65.7%. Upon scrutinizing the cultivation stage, large burden came from the use of fertilizers and electricity. Therefore, cultivation using inorganic fertilizers should be lessened. The use of waste nutrients from industries can be considered (organic fertilizers). Although microalgae have the potential for carbon capture and the torrefied algal biomass and its residue as a replacement for coal, the production process into its conversion to solid fuel using the electricity requires a suitable approach. Identifying other sources of energy and new technology should be addressed to help reduce the energy demand.
碳化藻生物量生命周期评价
微藻及其残余物的生物质可以直接燃烧,但不能直接用于工业上替代煤炭发电。这是因为它的热值比煤低。为了解决这个问题,使用了一种被称为焙烧的热化学过程。这使微藻生物量的热值增加到与煤大致相同的水平。然而,为了考虑大规模生产,应该衡量未来工业规模可能对环境造成的影响。因此,本文提出了碳化微藻生物量生产的生命周期评估。然后从文献中获得次要数据,并使用市售的生命周期评估工具SimaPro 8.5.2进行分析。将环境影响分为3类,对人类健康的损害占66.6%,在所有生产阶段最高,对资源的损害占29.2%,对生态系统的损害占4.22%。生产阶段对环境的综合影响最大,达到65.7%。仔细观察耕种阶段,很大的负担来自化肥和电力的使用。因此,应减少使用无机肥料的栽培。可以考虑使用工业废料(有机肥)。虽然微藻具有碳捕获的潜力,并且碳化的藻类生物质及其残留物可以替代煤炭,但利用电力将其转化为固体燃料的生产过程需要一个合适的方法。应确定其他能源来源和新技术,以帮助减少能源需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信