Cellular objects in isotropic motivic categories

Fabio Tanania
{"title":"Cellular objects in isotropic motivic categories","authors":"Fabio Tanania","doi":"10.2140/gt.2023.27.2013","DOIUrl":null,"url":null,"abstract":"Our main purpose is to describe the category of isotropic cellular spectra over flexible fields. Guided by [6], we show that it is equivalent, as a stable $\\infty$-category equipped with a $t$-structure, to the derived category of left comodules over the dual of the classical topological Steenrod algebra. In order to obtain this result, the category of isotropic cellular modules over the motivic Brown-Peterson spectrum is also studied, and isotropic Adams and Adams-Novikov spectral sequences are developed. As a consequence, we also compute hom sets in the category of isotropic Tate motives between motives of isotropic cellular spectra.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Our main purpose is to describe the category of isotropic cellular spectra over flexible fields. Guided by [6], we show that it is equivalent, as a stable $\infty$-category equipped with a $t$-structure, to the derived category of left comodules over the dual of the classical topological Steenrod algebra. In order to obtain this result, the category of isotropic cellular modules over the motivic Brown-Peterson spectrum is also studied, and isotropic Adams and Adams-Novikov spectral sequences are developed. As a consequence, we also compute hom sets in the category of isotropic Tate motives between motives of isotropic cellular spectra.
各向同性动力类别中的细胞对象
我们的主要目的是描述柔性场上各向同性细胞光谱的类别。在[6]的指导下,我们证明了它作为一个具有$t$ -结构的稳定$\infty$ -范畴,等价于经典拓扑Steenrod代数对偶上左模的派生范畴。为了得到这一结果,还研究了各向同性元胞模在动力Brown-Peterson谱上的类别,并建立了各向同性Adams和Adams- novikov谱序列。因此,我们还计算了各向同性胞谱动机之间各向同性泰特动机类别中的家集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信