DroidMLN: A Markov Logic Network Approach to Detect Android Malware

Mahmuda Rahman
{"title":"DroidMLN: A Markov Logic Network Approach to Detect Android Malware","authors":"Mahmuda Rahman","doi":"10.1109/ICMLA.2013.184","DOIUrl":null,"url":null,"abstract":"Traditional data mining mechanisms with their robustly defined classification techniques have certain limitations to express to what extent the class labels of the test data hold. This problem leads to the fact that a false positive or false negative data point has no quantitative value to express to what degree it is false/true. This situation becomes much severe when it comes to the problem of Malware detection for a growing business market like Android applications. To address the need for a more fine grained model to measure the fitness of the classification we used Markov Logic Network for the first time to detect Android Malwares.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Traditional data mining mechanisms with their robustly defined classification techniques have certain limitations to express to what extent the class labels of the test data hold. This problem leads to the fact that a false positive or false negative data point has no quantitative value to express to what degree it is false/true. This situation becomes much severe when it comes to the problem of Malware detection for a growing business market like Android applications. To address the need for a more fine grained model to measure the fitness of the classification we used Markov Logic Network for the first time to detect Android Malwares.
DroidMLN:一种检测Android恶意软件的马尔科夫逻辑网络方法
传统的数据挖掘机制及其鲁棒定义的分类技术在表达测试数据的类标签持有的程度方面存在一定的局限性。这个问题导致这样一个事实,即假阳性或假阴性数据点没有定量值来表达它的假/真程度。当涉及到像Android应用程序这样不断增长的商业市场的恶意软件检测问题时,这种情况变得更加严重。为了解决需要更细粒度的模型来衡量分类的适应度,我们首次使用马尔可夫逻辑网络来检测Android恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信