Genetic Algorithm-Based Path Planning for Autonomous Mobile Robots

Areej Alabbadi, Awos Kanan
{"title":"Genetic Algorithm-Based Path Planning for Autonomous Mobile Robots","authors":"Areej Alabbadi, Awos Kanan","doi":"10.1109/JEEIT58638.2023.10185855","DOIUrl":null,"url":null,"abstract":"In this paper, a Genetic Algorithm is used to solve the path planning problem for autonomous mobile robots in static environments. The goal of the path planning problem is to find a valid and practical path between two points while avoiding obstacles and optimizing a number of criteria including path length, safety, and distance from obstacles. A quality function is proposed to evaluate the optimization approach for different scenarios. Experimental results show that enhanced solutions can be achieved in less time using optimal values of the search algorithm parameters.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"34 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEEIT58638.2023.10185855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a Genetic Algorithm is used to solve the path planning problem for autonomous mobile robots in static environments. The goal of the path planning problem is to find a valid and practical path between two points while avoiding obstacles and optimizing a number of criteria including path length, safety, and distance from obstacles. A quality function is proposed to evaluate the optimization approach for different scenarios. Experimental results show that enhanced solutions can be achieved in less time using optimal values of the search algorithm parameters.
基于遗传算法的自主移动机器人路径规划
本文采用遗传算法求解静态环境下自主移动机器人的路径规划问题。路径规划问题的目标是在两点之间找到一条有效且实用的路径,同时避开障碍物,并优化路径长度、安全性和与障碍物的距离等一系列标准。提出了一个质量函数来评估不同场景下的优化方法。实验结果表明,利用搜索算法参数的最优值可以在较短的时间内得到增强解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信