Mohd Saiful Hazam Majid, W. Khairunizam, A. Shahriman, I. Zunaidi, B. N. Sahyudi, M. Zuradzman
{"title":"EMG Feature Extractions for Upper-Limb Functional Movement During Rehabilitation","authors":"Mohd Saiful Hazam Majid, W. Khairunizam, A. Shahriman, I. Zunaidi, B. N. Sahyudi, M. Zuradzman","doi":"10.1109/ICIIBMS.2018.8549932","DOIUrl":null,"url":null,"abstract":"Rehabilitation is important treatment for post stroke patient to regain their muscle strength and motor coordination as well as to retrain their nervous system. Electromyography (EMG) has been used by researcher to enhance conventional rehabilitation method as a tool to monitor muscle electrical activity however EMG signal is very stochastic in nature and contains some noise. Special technique is yet to be researched in processing EMG signal to make it useful and effective both to researcher and to patient in general. Feature extraction is among the signal processing technique involved and the best method for specific EMG study needs to be applied. In this works, nine feature extractions techniques are applied to EMG signals recorder from subjects performing upper limb rehabilitation activity based on suggested movement sequence pattern. Three healthy subjects perform the experiment with three trials each and EMG data were recorded from their bicep and deltoid muscle. The applied features for every trials of each subject were analyzed statistically using student T-Test their significant of p-value. The results were then totaled up and compared between the nine features applied and Auto Regressive coefficient (AR) present the best result and consistent with each subjects' data. This feature will be used later in our future research work of Upper-limb Virtual Reality Rehabilitation.","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8549932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Rehabilitation is important treatment for post stroke patient to regain their muscle strength and motor coordination as well as to retrain their nervous system. Electromyography (EMG) has been used by researcher to enhance conventional rehabilitation method as a tool to monitor muscle electrical activity however EMG signal is very stochastic in nature and contains some noise. Special technique is yet to be researched in processing EMG signal to make it useful and effective both to researcher and to patient in general. Feature extraction is among the signal processing technique involved and the best method for specific EMG study needs to be applied. In this works, nine feature extractions techniques are applied to EMG signals recorder from subjects performing upper limb rehabilitation activity based on suggested movement sequence pattern. Three healthy subjects perform the experiment with three trials each and EMG data were recorded from their bicep and deltoid muscle. The applied features for every trials of each subject were analyzed statistically using student T-Test their significant of p-value. The results were then totaled up and compared between the nine features applied and Auto Regressive coefficient (AR) present the best result and consistent with each subjects' data. This feature will be used later in our future research work of Upper-limb Virtual Reality Rehabilitation.