A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm

M. Koucký, V. Rödl, N. Talebanfard
{"title":"A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm","authors":"M. Koucký, V. Rödl, N. Talebanfard","doi":"10.46298/lmcs-17(4:17)2021","DOIUrl":null,"url":null,"abstract":"We show that for every $r \\ge 2$ there exists $\\epsilon_r > 0$ such that any\n$r$-uniform hypergraph with $m$ edges and maximum vertex degree $o(\\sqrt{m})$\ncontains a set of at most $(\\frac{1}{2} - \\epsilon_r)m$ edges the removal of\nwhich breaks the hypergraph into connected components with at most $m/2$ edges.\nWe use this to give an algorithm running in time $d^{(1 - \\epsilon_r)m}$ that\ndecides satisfiability of $m$-variable $(d, k)$-CSPs in which every variable\nappears in at most $r$ constraints, where $\\epsilon_r$ depends only on $r$ and\n$k\\in o(\\sqrt{m})$. Furthermore our algorithm solves the corresponding #CSP-SAT\nand Max-CSP-SAT of these CSPs. We also show that CNF representations of\nunsatisfiable $(2, k)$-CSPs with variable frequency $r$ can be refuted in\ntree-like resolution in size $2^{(1 - \\epsilon_r)m}$. Furthermore for Tseitin\nformulas on graphs with degree at most $k$ (which are $(2, k)$-CSPs) we give a\ndeterministic algorithm finding such a refutation.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-17(4:17)2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that for every $r \ge 2$ there exists $\epsilon_r > 0$ such that any $r$-uniform hypergraph with $m$ edges and maximum vertex degree $o(\sqrt{m})$ contains a set of at most $(\frac{1}{2} - \epsilon_r)m$ edges the removal of which breaks the hypergraph into connected components with at most $m/2$ edges. We use this to give an algorithm running in time $d^{(1 - \epsilon_r)m}$ that decides satisfiability of $m$-variable $(d, k)$-CSPs in which every variable appears in at most $r$ constraints, where $\epsilon_r$ depends only on $r$ and $k\in o(\sqrt{m})$. Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable $(2, k)$-CSPs with variable frequency $r$ can be refuted in tree-like resolution in size $2^{(1 - \epsilon_r)m}$. Furthermore for Tseitin formulas on graphs with degree at most $k$ (which are $(2, k)$-CSPs) we give a deterministic algorithm finding such a refutation.
超图的分隔定理与CSP-SAT算法
我们证明了对于每个$r \ge 2$存在$\epsilon_r > 0$,使得任何具有$m$条边和最大顶点度$o(\sqrt{m})$的$r$ -均匀超图包含一组最多$(\frac{1}{2} - \epsilon_r)m$条边,删除这些边将超图分解为最多$m/2$条边的连接组件。我们用它来给出一个算法运行在时间$d^{(1 - \epsilon_r)m}$中,决定$m$ -变量$(d, k)$ - csp的可满足性,其中每个变量最多出现在$r$约束中,其中$\epsilon_r$仅依赖于$r$和$k\in o(\sqrt{m})$。此外,该算法还求解了这些csp对应的# csp - sat和Max-CSP-SAT。我们还表明,不满意的变频$(2, k)$ - csp的CNF表示$r$可以在大小$2^{(1 - \epsilon_r)m}$的树状分辨率中被驳斥。此外,对于度最多为$k$的图(即$(2, k)$ - csp)上的tseitin公式,我们给出了一种确定的算法来找到这样的反驳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信