Discrimination at the Edge of Noise: A Hilbert Space of Stationary Ergodic Processes

I. Chattopadhyay
{"title":"Discrimination at the Edge of Noise: A Hilbert Space of Stationary Ergodic Processes","authors":"I. Chattopadhyay","doi":"10.1109/ICDMW.2017.129","DOIUrl":null,"url":null,"abstract":"Identifying meaningful signal buried in noise is a problem of interest arising in diverse scenarios of data-driven modeling. We present here a theoretical framework for exploiting intrinsic geometry in data that resists noise corruption, and might be identifiable under severe obfuscation. Our approach is based on uncovering a valid complete inner product on the space of ergodic stationary finite valued processes, providing the latter with the structure of a Hilbert space on the real field. This rigorous construction, based on non-standard generalizations of the notions of sum and scalar multiplication of finite dimensional probability vectors, allows us to meaningfully talk about \"angles\" between data streams and data sources, and, make precise the notion of orthogonal stochastic processes. In particular, the relative angles appear to be preserved, and identifiable, under severe noise, and will be developed in future as the underlying principle for robust classification, clustering and unsupervised featurization algorithms.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying meaningful signal buried in noise is a problem of interest arising in diverse scenarios of data-driven modeling. We present here a theoretical framework for exploiting intrinsic geometry in data that resists noise corruption, and might be identifiable under severe obfuscation. Our approach is based on uncovering a valid complete inner product on the space of ergodic stationary finite valued processes, providing the latter with the structure of a Hilbert space on the real field. This rigorous construction, based on non-standard generalizations of the notions of sum and scalar multiplication of finite dimensional probability vectors, allows us to meaningfully talk about "angles" between data streams and data sources, and, make precise the notion of orthogonal stochastic processes. In particular, the relative angles appear to be preserved, and identifiable, under severe noise, and will be developed in future as the underlying principle for robust classification, clustering and unsupervised featurization algorithms.
噪声边缘的判别:平稳遍历过程的Hilbert空间
识别隐藏在噪声中的有意义的信号是在数据驱动建模的各种场景中引起兴趣的问题。我们在这里提出了一个理论框架,用于利用数据中的固有几何形状,该几何形状可以抵抗噪声损坏,并且可以在严重混淆下识别。我们的方法是基于在遍历平稳有限值过程的空间上揭示一个有效的完全内积,并为后者提供实域上希尔伯特空间的结构。这种严格的构造,基于有限维概率向量的和和标量乘法概念的非标准推广,使我们能够有意义地讨论数据流和数据源之间的“角度”,并使正交随机过程的概念更加精确。特别是,在严重噪声下,相对角度似乎被保留和可识别,并将在未来发展为鲁棒分类,聚类和无监督特征化算法的基本原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信