A Review for Recommender System Models and Deep Learning

F. Nagy, A. Haroun, Hatem Abdel-Kader, A. Keshk
{"title":"A Review for Recommender System Models and Deep Learning","authors":"F. Nagy, A. Haroun, Hatem Abdel-Kader, A. Keshk","doi":"10.21608/ijci.2021.207864","DOIUrl":null,"url":null,"abstract":"In the big data and data Science age, the advancement in technology accelerated the need to make a choice from a huge amount of various alternatives and this vast amount of online data is a time consuming and very tedious task. Recommendation systems (RS) are an enormous solution to solve information overload problem. Recommendation systems have caught the attention of researchers and companies recently. It can handle data with a huge amount and help the user to make a decision. In this paper we introduce an overview for the traditional recommendation systems models, the recommendation systems advantages and shortcoming, the recommendation systems challenges, common deep learning traditional technology, how deep learning-based recommendation systems works, deep learning for recommendations and open problems and the novel research trends on this field. Key words-recommender system, challenges, deep learning, RS open issues, future research directions.","PeriodicalId":137729,"journal":{"name":"IJCI. International Journal of Computers and Information","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCI. International Journal of Computers and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijci.2021.207864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the big data and data Science age, the advancement in technology accelerated the need to make a choice from a huge amount of various alternatives and this vast amount of online data is a time consuming and very tedious task. Recommendation systems (RS) are an enormous solution to solve information overload problem. Recommendation systems have caught the attention of researchers and companies recently. It can handle data with a huge amount and help the user to make a decision. In this paper we introduce an overview for the traditional recommendation systems models, the recommendation systems advantages and shortcoming, the recommendation systems challenges, common deep learning traditional technology, how deep learning-based recommendation systems works, deep learning for recommendations and open problems and the novel research trends on this field. Key words-recommender system, challenges, deep learning, RS open issues, future research directions.
推荐系统模型与深度学习综述
在大数据和数据科学时代,技术的进步加速了从大量的各种选择中做出选择的需要,而这种大量的在线数据是一项耗时且非常繁琐的任务。推荐系统是解决信息过载问题的一种有效方法。推荐系统最近引起了研究人员和企业的注意。它可以处理大量的数据,并帮助用户做出决定。本文综述了传统推荐系统的模型、推荐系统的优缺点、推荐系统面临的挑战、常见的深度学习传统技术、基于深度学习的推荐系统的工作原理、深度学习的推荐和开放问题以及该领域的新研究趋势。关键词:推荐系统,挑战,深度学习,RS开放问题,未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信