Diffeomorphic Registration Using Sinkhorn Divergences

Lucas de Lara, Alberto Gonz'alez-Sanz, Jean-Michel Loubes
{"title":"Diffeomorphic Registration Using Sinkhorn Divergences","authors":"Lucas de Lara, Alberto Gonz'alez-Sanz, Jean-Michel Loubes","doi":"10.1137/22m1493562","DOIUrl":null,"url":null,"abstract":"The diffeomorphic registration framework enables to define an optimal matching function between two probability measures with respect to a data-fidelity loss function. The non convexity of the optimization problem renders the choice of this loss function crucial to avoid poor local minima. Recent work showed experimentally the efficiency of entropy-regularized optimal transportation costs, as they are computationally fast and differentiable while having few minima. Following this approach, we provide in this paper a new framework based on Sinkhorn divergences, unbiased entropic optimal transportation costs, and prove the statistical consistency with rate of the empirical optimal deformations.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1493562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The diffeomorphic registration framework enables to define an optimal matching function between two probability measures with respect to a data-fidelity loss function. The non convexity of the optimization problem renders the choice of this loss function crucial to avoid poor local minima. Recent work showed experimentally the efficiency of entropy-regularized optimal transportation costs, as they are computationally fast and differentiable while having few minima. Following this approach, we provide in this paper a new framework based on Sinkhorn divergences, unbiased entropic optimal transportation costs, and prove the statistical consistency with rate of the empirical optimal deformations.
利用Sinkhorn散度的差分同胚配准
该差分配准框架能够定义关于数据保真度损失函数的两个概率测度之间的最优匹配函数。优化问题的非凸性使得损失函数的选择对于避免局部极值问题至关重要。最近的工作通过实验证明了熵正则化最优运输成本的效率,因为它们在计算速度快、可微的同时具有很少的最小值。在此基础上,提出了一个基于Sinkhorn散度、无偏熵最优运输成本的新框架,并证明了其与经验最优变形率的统计一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信