Acoustic Modeling for Multi-Array Conversational Speech Recognition in the Chime-6 Challenge

Li Chai, Jun Du, Diyuan Liu, Yanhui Tu, Chin-Hui Lee
{"title":"Acoustic Modeling for Multi-Array Conversational Speech Recognition in the Chime-6 Challenge","authors":"Li Chai, Jun Du, Diyuan Liu, Yanhui Tu, Chin-Hui Lee","doi":"10.1109/SLT48900.2021.9383628","DOIUrl":null,"url":null,"abstract":"This paper presents our main contributions of acoustic modeling for multi-array multi-talker speech recognition in the CHiME-6 Challenge, exploring different strategies for acoustic data augmentation and neural network architectures. First, enhanced data from our front-end network preprocessing and spectral augmentation are investigated to be effective for improving speech recognition performance. Second, several neural network architectures are explored by different combinations of deep residual network (ResNet), factorized time delay neural network (TDNNF) and residual bidirectional long short-term memory (RBiLSTM). Finally, multiple acoustic models can be combined via minimum Bayes risk fusion. Compared with the official baseline acoustic model, the proposed solution can achieve a relatively word error rate reduction of 19% for the best single ASR system on the evaluation data, which is also one of main contributions to our top system for the Track 1 tasks of the CHiME-6 Challenge.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents our main contributions of acoustic modeling for multi-array multi-talker speech recognition in the CHiME-6 Challenge, exploring different strategies for acoustic data augmentation and neural network architectures. First, enhanced data from our front-end network preprocessing and spectral augmentation are investigated to be effective for improving speech recognition performance. Second, several neural network architectures are explored by different combinations of deep residual network (ResNet), factorized time delay neural network (TDNNF) and residual bidirectional long short-term memory (RBiLSTM). Finally, multiple acoustic models can be combined via minimum Bayes risk fusion. Compared with the official baseline acoustic model, the proposed solution can achieve a relatively word error rate reduction of 19% for the best single ASR system on the evaluation data, which is also one of main contributions to our top system for the Track 1 tasks of the CHiME-6 Challenge.
Chime-6挑战中多阵列对话语音识别的声学建模
本文介绍了我们在CHiME-6挑战赛中对多阵列多说话者语音识别声学建模的主要贡献,探索了声学数据增强和神经网络架构的不同策略。首先,研究了我们的前端网络预处理和频谱增强的增强数据对提高语音识别性能的有效性。其次,通过深度残差网络(ResNet)、分解时滞神经网络(TDNNF)和残差双向长短期记忆(RBiLSTM)的不同组合,探索了几种神经网络结构。最后,通过最小贝叶斯风险融合实现多个声学模型的组合。与官方基线声学模型相比,本文提出的解决方案在评估数据上的最佳单一ASR系统的相对单词错误率降低了19%,这也是我们为CHiME-6挑战赛的Track 1任务做出的主要贡献之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信