Reinforcement learning in hierarchical cognitive radio wireless networks

K. Katzis, K. Papanikolaou, Marios Iakovou
{"title":"Reinforcement learning in hierarchical cognitive radio wireless networks","authors":"K. Katzis, K. Papanikolaou, Marios Iakovou","doi":"10.1145/2507908.2507910","DOIUrl":null,"url":null,"abstract":"Opportunistic networks are an emerging networking paradigm aiming to exploit the spectrum availability in a distributed ad-hoc manner. In such types of networks communication between source and destination is established on-the-fly and depends on a number of parameters related to the channel. In this paper, we present an algorithm for routing optimization in hierarchical cognitive radio enabled networks, using the access base stations. We describe how spatial and temporal system parameters between nodes can be employed to design optimum routes between the nodes thus becoming invaluable for deriving optimum opportunistic algorithms. Initial results of this work indicate that traffic history can improve the performance of the routing algorithm by identifying the nodes that are most likely to be available for routing thus minimizing retransmissions and reducing blocking probability. One of the challenges in dealing with these records is the memory and processing requirements needed by the power hungry algorithms.","PeriodicalId":166569,"journal":{"name":"HP-MOSys '13","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HP-MOSys '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2507908.2507910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Opportunistic networks are an emerging networking paradigm aiming to exploit the spectrum availability in a distributed ad-hoc manner. In such types of networks communication between source and destination is established on-the-fly and depends on a number of parameters related to the channel. In this paper, we present an algorithm for routing optimization in hierarchical cognitive radio enabled networks, using the access base stations. We describe how spatial and temporal system parameters between nodes can be employed to design optimum routes between the nodes thus becoming invaluable for deriving optimum opportunistic algorithms. Initial results of this work indicate that traffic history can improve the performance of the routing algorithm by identifying the nodes that are most likely to be available for routing thus minimizing retransmissions and reducing blocking probability. One of the challenges in dealing with these records is the memory and processing requirements needed by the power hungry algorithms.
分层认知无线网络中的强化学习
机会网络是一种新兴的网络范例,旨在以分布式自组织方式利用频谱可用性。在这种类型的网络中,源和目标之间的通信是动态建立的,依赖于与信道有关的一些参数。本文提出了一种基于接入基站的分层认知无线网络路由优化算法。我们描述了如何利用节点之间的空间和时间系统参数来设计节点之间的最佳路线,从而成为推导最佳机会算法的宝贵资源。这项工作的初步结果表明,流量历史可以通过识别最有可能用于路由的节点来提高路由算法的性能,从而最大限度地减少重传并降低阻塞概率。处理这些记录的挑战之一是耗电算法所需的内存和处理需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信