An efficient approach for the maintenance of path traversal patterns

Show-Jane Yen, Yue-Shi Lee, Chung-Wen Cho
{"title":"An efficient approach for the maintenance of path traversal patterns","authors":"Show-Jane Yen, Yue-Shi Lee, Chung-Wen Cho","doi":"10.1109/EEE.2004.1287311","DOIUrl":null,"url":null,"abstract":"Mining frequent traversal patterns is to discover the consecutive reference paths traversed by a sufficient number of users from Web logs. The previous approaches for mining frequent traversal patterns need to repeatedly scan the traversal paths and take a large amount of computation time to find frequent traversal patterns. However, the discovered frequent traversal patterns may become invalid or inappropriate when the databases are updated. We propose an incremental updating technique to maintain the discovered frequent traversal patterns when the user sequences are inserted into or the database. Our approach partitions the database into some segments and scans the database segment by segment. For each segment scan, the candidate traversal sequences that cannot be frequent traversal sequences can be pruned and the frequent traversal sequences can be found out earlier. Besides, the number of database scans can be significantly reduced because some information can be computed by our approach. The experimental results show that our algorithms are more efficient than other algorithms for the maintenance of mining frequent traversal patterns.","PeriodicalId":360167,"journal":{"name":"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004","volume":"2451 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEE.2004.1287311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Mining frequent traversal patterns is to discover the consecutive reference paths traversed by a sufficient number of users from Web logs. The previous approaches for mining frequent traversal patterns need to repeatedly scan the traversal paths and take a large amount of computation time to find frequent traversal patterns. However, the discovered frequent traversal patterns may become invalid or inappropriate when the databases are updated. We propose an incremental updating technique to maintain the discovered frequent traversal patterns when the user sequences are inserted into or the database. Our approach partitions the database into some segments and scans the database segment by segment. For each segment scan, the candidate traversal sequences that cannot be frequent traversal sequences can be pruned and the frequent traversal sequences can be found out earlier. Besides, the number of database scans can be significantly reduced because some information can be computed by our approach. The experimental results show that our algorithms are more efficient than other algorithms for the maintenance of mining frequent traversal patterns.
维护路径遍历模式的有效方法
挖掘频繁遍历模式是为了从Web日志中发现足够数量的用户所遍历的连续引用路径。以往挖掘频繁遍历模式的方法需要重复扫描遍历路径,并且需要大量的计算时间来查找频繁遍历模式。但是,在更新数据库时,发现的频繁遍历模式可能变得无效或不合适。我们提出了一种增量更新技术,用于在用户序列插入到数据库中时维护发现的频繁遍历模式。我们的方法将数据库划分为若干段,并逐段扫描数据库。对于每一次片段扫描,可以对不可能是频繁遍历序列的候选遍历序列进行剪接,从而更早地发现频繁遍历序列。此外,由于我们的方法可以计算一些信息,因此可以显著减少数据库扫描的次数。实验结果表明,我们的算法在挖掘频繁遍历模式的维护方面比其他算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信