Using relation similarity on open information extraction-based event template extraction

A. Romadhony, D. H. Widyantoro, A. Purwarianti
{"title":"Using relation similarity on open information extraction-based event template extraction","authors":"A. Romadhony, D. H. Widyantoro, A. Purwarianti","doi":"10.1109/ICACSIS.2016.7872791","DOIUrl":null,"url":null,"abstract":"Automatic template extraction has been studied intensively in order to perform information extraction without predefined template. Several existing studies utilized the similar preprocessing techniques which are applied in Open Information Extraction (Open IE) paradigm system. We investigate the use of Open IE results to build the automatic event template extraction. In this study, we adapt the clustering based approach for template extraction, and propose to add the relation similarity information in the clustering function. We compare the clusters quality of the Open IE based system and non-Open IE based system and also with the use of relation similarity function using document classification metric. The experimental result shows that the performance of Open IE based system is comparable with the non-Open IE based system and the relation similarity information is able to improve the clusters quality.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automatic template extraction has been studied intensively in order to perform information extraction without predefined template. Several existing studies utilized the similar preprocessing techniques which are applied in Open Information Extraction (Open IE) paradigm system. We investigate the use of Open IE results to build the automatic event template extraction. In this study, we adapt the clustering based approach for template extraction, and propose to add the relation similarity information in the clustering function. We compare the clusters quality of the Open IE based system and non-Open IE based system and also with the use of relation similarity function using document classification metric. The experimental result shows that the performance of Open IE based system is comparable with the non-Open IE based system and the relation similarity information is able to improve the clusters quality.
基于关系相似度的开放信息提取事件模板提取
为了在没有预定义模板的情况下进行信息提取,对自动模板提取进行了深入的研究。已有的一些研究使用了类似的预处理技术,这些技术应用于开放信息提取(Open IE)范式系统。我们研究了使用Open IE构建自动事件模板提取的结果。本文采用基于聚类的方法进行模板提取,并提出在聚类函数中加入关系相似度信息。我们比较了基于开放IE的系统和非基于开放IE的系统的聚类质量,并使用了基于文档分类度量的关系相似函数。实验结果表明,基于开放IE的聚类系统与非开放IE的聚类系统性能相当,并且关系相似信息能够提高聚类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信