On the Design of Fast Pseudo-Random Number Generators for the Cell Broadband Engine and an Application to Risk Analysis

David A. Bader, Aparna Chandramowlishwaran, Virat Agarwal
{"title":"On the Design of Fast Pseudo-Random Number Generators for the Cell Broadband Engine and an Application to Risk Analysis","authors":"David A. Bader, Aparna Chandramowlishwaran, Virat Agarwal","doi":"10.1109/ICPP.2008.41","DOIUrl":null,"url":null,"abstract":"Numerical simulations in computational physics, biology, and finance, often require the use of high quality and efficient parallel random number generators. We design and optimize several parallel pseudo random number generators on the cell broadband engine, with minimal correlation between the parallel streams: the linear congruential generator (LCG) with 64-bit prime addend and the Mersenne Twister (MT) algorithm. As compared with current Intel and AMD microprocessors, our Cell/B.E. LCG and MT implementations achieve a speed up of 33 and 29, respectively. We also explore two normalization techniques, Gaussian averaging method and box Mueller polar/cartesian, that transform uniform random numbers to a Gaussian distribution. Using these fast generators we develop a parallel implementation of value at risk, a commonly used model for risk assessment in financial markets. To our knowledge we have designed and implemented the fastest parallel pseudo random number generators on the Cell/B.E.","PeriodicalId":388408,"journal":{"name":"2008 37th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 37th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2008.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Numerical simulations in computational physics, biology, and finance, often require the use of high quality and efficient parallel random number generators. We design and optimize several parallel pseudo random number generators on the cell broadband engine, with minimal correlation between the parallel streams: the linear congruential generator (LCG) with 64-bit prime addend and the Mersenne Twister (MT) algorithm. As compared with current Intel and AMD microprocessors, our Cell/B.E. LCG and MT implementations achieve a speed up of 33 and 29, respectively. We also explore two normalization techniques, Gaussian averaging method and box Mueller polar/cartesian, that transform uniform random numbers to a Gaussian distribution. Using these fast generators we develop a parallel implementation of value at risk, a commonly used model for risk assessment in financial markets. To our knowledge we have designed and implemented the fastest parallel pseudo random number generators on the Cell/B.E.
小区宽带引擎快速伪随机数发生器的设计及其在风险分析中的应用
计算物理、生物学和金融学中的数值模拟通常需要使用高质量和高效的并行随机数生成器。我们在单元宽带引擎上设计并优化了几种并行伪随机数生成器,并行流之间的相关性最小:64位素数加数线性同余生成器(LCG)和Mersenne Twister (MT)算法。与目前的英特尔和AMD微处理器相比,我们的Cell/B.E.LCG和MT的实现分别实现了33和29的速度提升。我们还探索了两种归一化技术,高斯平均法和盒穆勒极/笛卡尔,将均匀随机数转换为高斯分布。使用这些快速生成器,我们开发了风险价值的并行实现,这是金融市场中常用的风险评估模型。据我们所知,我们已经在Cell/B.E.上设计并实现了最快的并行伪随机数生成器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信