Protein interaction prediction for mouse pdz domains using dipeptide composition features

Songyot Nakariyakul, Zhiping Liu, Luonan Chen
{"title":"Protein interaction prediction for mouse pdz domains using dipeptide composition features","authors":"Songyot Nakariyakul, Zhiping Liu, Luonan Chen","doi":"10.1109/ISB.2011.6033143","DOIUrl":null,"url":null,"abstract":"The PDZ domain is one of the largest families of protein domains that are involved in targeting and routing specific proteins in signaling pathways. PDZ domains mediate protein-protein interactions by binding the C-terminal peptides of their target proteins. Using the dipeptide feature encoding, we develop a PDZ domain interaction predictor using a support vector machine that achieves a high accuracy rate of 82.49%. Since most of the dipeptide compositions are redundant and irrelevant, we propose a new hybrid feature selection technique to select only a subset of these compositions that are useful for interaction prediction. Our experimental results show that only approximately 25% of dipeptide features are needed and that our method increases the accuracy by 3%. The selected dipeptide features are analyzed and shown to have important roles on specificity pattern of PDZ domains.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The PDZ domain is one of the largest families of protein domains that are involved in targeting and routing specific proteins in signaling pathways. PDZ domains mediate protein-protein interactions by binding the C-terminal peptides of their target proteins. Using the dipeptide feature encoding, we develop a PDZ domain interaction predictor using a support vector machine that achieves a high accuracy rate of 82.49%. Since most of the dipeptide compositions are redundant and irrelevant, we propose a new hybrid feature selection technique to select only a subset of these compositions that are useful for interaction prediction. Our experimental results show that only approximately 25% of dipeptide features are needed and that our method increases the accuracy by 3%. The selected dipeptide features are analyzed and shown to have important roles on specificity pattern of PDZ domains.
利用二肽组成特征预测小鼠pdz结构域的蛋白质相互作用
PDZ结构域是最大的蛋白质结构域家族之一,参与信号通路中特定蛋白质的靶向和路由。PDZ结构域通过结合靶蛋白的c端肽介导蛋白与蛋白的相互作用。利用二肽特征编码,利用支持向量机开发了PDZ结构域相互作用预测器,准确率达到82.49%。由于大多数二肽组成是冗余的和不相关的,我们提出了一种新的混合特征选择技术,只选择这些组成的一个子集对相互作用预测有用。我们的实验结果表明,我们的方法只需要大约25%的二肽特征,准确度提高了3%。对所选择的二肽特征进行了分析,并证明其对PDZ结构域的特异性模式具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信