Neural network based method for the automatic detection of the stator faults of the induction motor

Monia Ben Khader Bouzid, G. Champenois
{"title":"Neural network based method for the automatic detection of the stator faults of the induction motor","authors":"Monia Ben Khader Bouzid, G. Champenois","doi":"10.1109/ICEESA.2013.6578393","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network based method to achieve an automatic detection of different stator faults of the induction motor. The concerned stator faults are the inter turns short circuit, phase to phase and phase to ground faults. The inputs of the feedforward multi-layer neural network are the indicators of the stator faults while its outputs are the corresponding faults. Therefore, the used indicators of faults are extracted from the symmetrical components of the stator currents which are the magnitude and the angle phase of the negative and zero sequence current. The neural network is trained by the back-propagation algorithm. A faulty simplified multiple coupled circuit model of a 1.1 kW induction motor is used to simulate the different operating conditions of the machine useful to built the data base for the training and the test procedures. The good training and test results show the efficiency of the proposed method.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes a neural network based method to achieve an automatic detection of different stator faults of the induction motor. The concerned stator faults are the inter turns short circuit, phase to phase and phase to ground faults. The inputs of the feedforward multi-layer neural network are the indicators of the stator faults while its outputs are the corresponding faults. Therefore, the used indicators of faults are extracted from the symmetrical components of the stator currents which are the magnitude and the angle phase of the negative and zero sequence current. The neural network is trained by the back-propagation algorithm. A faulty simplified multiple coupled circuit model of a 1.1 kW induction motor is used to simulate the different operating conditions of the machine useful to built the data base for the training and the test procedures. The good training and test results show the efficiency of the proposed method.
基于神经网络的异步电动机定子故障自动检测方法
提出了一种基于神经网络的异步电动机定子故障自动检测方法。所涉及的定子故障包括匝间短路、相对相和相对地故障。前馈多层神经网络的输入是定子故障的指示器,输出是相应的故障。因此,从定子电流的对称分量中提取故障指标,即负序和零序电流的幅值和角相角。神经网络采用反向传播算法进行训练。采用1.1 kW异步电动机的故障简化多耦合电路模型,模拟了电机的不同运行工况,为训练和测试程序的建立提供了数据基础。良好的训练和测试结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信