Derandomizing from Random Strings

H. Buhrman, L. Fortnow, M. Koucký, B. Loff
{"title":"Derandomizing from Random Strings","authors":"H. Buhrman, L. Fortnow, M. Koucký, B. Loff","doi":"10.1109/CCC.2010.15","DOIUrl":null,"url":null,"abstract":"In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R_K. It was previously known that PSPACE, and hence BPP is Turing-reducible to R_K. The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial length using the set R_K as oracle. Our new non-adaptive result relies on a new fundamental fact about the set R_K, namely each initial segment of the characteristic sequence of R_K has high Kolmogorov complexity. As a partial converse to our claim we show that strings of very high Kolmogorov-complexity when used as advice are not much more useful than randomly chosen strings.","PeriodicalId":328781,"journal":{"name":"2010 IEEE 25th Annual Conference on Computational Complexity","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 25th Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R_K. It was previously known that PSPACE, and hence BPP is Turing-reducible to R_K. The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial length using the set R_K as oracle. Our new non-adaptive result relies on a new fundamental fact about the set R_K, namely each initial segment of the characteristic sequence of R_K has high Kolmogorov complexity. As a partial converse to our claim we show that strings of very high Kolmogorov-complexity when used as advice are not much more useful than randomly chosen strings.
从随机字符串进行非随机化
本文证明了BPP是可约到Kolmogorov随机字符串R_K集合的真值表。我们以前知道PSPACE,因此BPP是图灵可约到R_K的。先前的证明依赖于图灵约简的自适应性,使用集合R_K作为oracle来找到多项式长度的kolmogorov随机字符串。我们新的非自适应结果依赖于关于集合R_K的一个新的基本事实,即R_K的特征序列的每个初始段都具有很高的Kolmogorov复杂度。作为我们声明的部分相反,我们表明,当作为建议使用时,非常高的kolmogorov复杂度的字符串并不比随机选择的字符串有用多少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信