Bayesian Best-First Search for Pattern Recognition - Application to Address Recognition

Tomoyuki Hamamura, T. Akagi, Bunpei Irie
{"title":"Bayesian Best-First Search for Pattern Recognition - Application to Address Recognition","authors":"Tomoyuki Hamamura, T. Akagi, Bunpei Irie","doi":"10.1109/ICDAR.2009.231","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel algorithm “Bayesian Best-First Search (BB Search)”, for use in search problems in pattern recognition, such as address recognition.BB search uses “a posteriori” probability for the evaluation value in best-first search. BB search is more flexible to changing time limits compared to beam search used in conventional pattern recognition approach. It does not need designing a heuristic function for each problem like A* search.We demonstrated a 12.4% improvement over beam search on an address recognition experiment using real postal images.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel algorithm “Bayesian Best-First Search (BB Search)”, for use in search problems in pattern recognition, such as address recognition.BB search uses “a posteriori” probability for the evaluation value in best-first search. BB search is more flexible to changing time limits compared to beam search used in conventional pattern recognition approach. It does not need designing a heuristic function for each problem like A* search.We demonstrated a 12.4% improvement over beam search on an address recognition experiment using real postal images.
模式识别中的贝叶斯最佳优先搜索-在地址识别中的应用
在本文中,我们提出了一种新的算法“贝叶斯最佳优先搜索(BB Search)”,用于模式识别中的搜索问题,如地址识别。BB搜索在最佳优先搜索中使用“后验”概率作为评估值。与传统模式识别方法中使用的波束搜索相比,BB搜索对时间限制的变化更加灵活。它不需要像a *搜索那样为每个问题设计一个启发式函数。在使用真实邮政图像的地址识别实验中,我们展示了比波束搜索提高12.4%的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信