On electric fields in belted cables and 3-phase gas insulated cables

G. S. Punekar, Tesfaye Nafo, N. Kishore
{"title":"On electric fields in belted cables and 3-phase gas insulated cables","authors":"G. S. Punekar, Tesfaye Nafo, N. Kishore","doi":"10.1109/ICPES.2011.6156690","DOIUrl":null,"url":null,"abstract":"The electric field distribution in Belted Cables and 3-phase gas insulated cables (GIC) enclosed in a common ground enclosure is analyzed and presented in this paper. The electric fields in this type of GIC are analogous to those of 3-phase belted cables. Unlike 3-phase screened cables, the stress distribution in belted cables is not radial. With time varying voltages (power frequency voltage variations; quasi-static voltages) the stress distribution in the cable insulation changes, not being radial. The electric stress distribution is expected to show systematic, revolving effect. This revolving effect is important as the location of maximum stresses keep on shifting. Also, as a secondary effect, the revolving e-field results into electric-field-winds which can add to the particle movements in the gas insulated cables. The literature acknowledges that particle movements in the gas insulated system can have deleterious effect on the over all system insulation strength; which partly get impetus from e-field-winds. The stresses in such a cable are analyzed using open source software Finite Element Method Magnetics (FEMM). The results presented show that the field distribution over a cycle (of 50 Hz) at discrete time intervals are thought to be having a great educational value, giving a feel of electric field variation in (i) belted cables and (ii) GIC with common enclosure. The computed results of electric stress and potential distribution using FEMM are compared with available results based on CSM models to validate the present results where ever possible.","PeriodicalId":158903,"journal":{"name":"2011 International Conference on Power and Energy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPES.2011.6156690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The electric field distribution in Belted Cables and 3-phase gas insulated cables (GIC) enclosed in a common ground enclosure is analyzed and presented in this paper. The electric fields in this type of GIC are analogous to those of 3-phase belted cables. Unlike 3-phase screened cables, the stress distribution in belted cables is not radial. With time varying voltages (power frequency voltage variations; quasi-static voltages) the stress distribution in the cable insulation changes, not being radial. The electric stress distribution is expected to show systematic, revolving effect. This revolving effect is important as the location of maximum stresses keep on shifting. Also, as a secondary effect, the revolving e-field results into electric-field-winds which can add to the particle movements in the gas insulated cables. The literature acknowledges that particle movements in the gas insulated system can have deleterious effect on the over all system insulation strength; which partly get impetus from e-field-winds. The stresses in such a cable are analyzed using open source software Finite Element Method Magnetics (FEMM). The results presented show that the field distribution over a cycle (of 50 Hz) at discrete time intervals are thought to be having a great educational value, giving a feel of electric field variation in (i) belted cables and (ii) GIC with common enclosure. The computed results of electric stress and potential distribution using FEMM are compared with available results based on CSM models to validate the present results where ever possible.
论带式电缆和三相气体绝缘电缆中的电场
分析和介绍了带式电缆和三相气体绝缘电缆在公共接地罩内的电场分布。这种类型的GIC中的电场类似于三相带式电缆的电场。与三相屏蔽电缆不同,带式电缆的应力分布不是径向的。随时间变化的电压(工频电压变化;准静态电压时,电缆绝缘中的应力分布发生变化,不呈径向分布。预计电应力分布将呈现出系统的、旋转的效应。这种旋转效应很重要,因为最大应力的位置一直在移动。此外,作为次级效应,旋转的电场会产生电场风,从而增加气体绝缘电缆中的粒子运动。文献承认,气体绝缘系统中的粒子运动可以对整个系统的绝缘强度产生有害影响;部分动力来自电场风。利用开源软件有限元法(FEMM)分析了这种电缆的应力。所提出的结果表明,在离散时间间隔的一个周期(50 Hz)内的场分布被认为具有很大的教育价值,给出了(i)带式电缆和(ii)具有共同外壳的GIC的电场变化的感觉。将有限元法计算的电应力和电势分布的结果与现有的基于CSM模型的计算结果进行了比较,尽可能地验证了现有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信