Coding for network-coded slotted ALOHA

Shenghao Yang, Yi Chen, S. Liew, Lizhao You
{"title":"Coding for network-coded slotted ALOHA","authors":"Shenghao Yang, Yi Chen, S. Liew, Lizhao You","doi":"10.1109/ITW.2015.7133085","DOIUrl":null,"url":null,"abstract":"Slotted ALOHA can benefit from physical-layer network coding (PNC) by decoding one or multiple linear combinations of the packets simultaneously transmitted in a timeslot, forming a system of linear equations. Different systems of linear equations are recovered in different timeslots. A message decoder then recovers the original packets of all the users by jointly solving multiple systems of linear equations obtained over different timeslots. We propose the batched BP decoding algorithm that combines belief propagation (BP) and local Gaussian elimination. Compared with pure Gaussian elimination decoding, our algorithm reduces the decoding complexity from cubic to linear function of the number of users. Compared with the ordinary BP decoding algorithm for low-density generator-matrix codes, our algorithm has better performance and the same order of computational complexity. We analyze the performance of the batched BP decoding algorithm by generalizing the tree-based approach and provide an approach to optimize the system performance.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Slotted ALOHA can benefit from physical-layer network coding (PNC) by decoding one or multiple linear combinations of the packets simultaneously transmitted in a timeslot, forming a system of linear equations. Different systems of linear equations are recovered in different timeslots. A message decoder then recovers the original packets of all the users by jointly solving multiple systems of linear equations obtained over different timeslots. We propose the batched BP decoding algorithm that combines belief propagation (BP) and local Gaussian elimination. Compared with pure Gaussian elimination decoding, our algorithm reduces the decoding complexity from cubic to linear function of the number of users. Compared with the ordinary BP decoding algorithm for low-density generator-matrix codes, our algorithm has better performance and the same order of computational complexity. We analyze the performance of the batched BP decoding algorithm by generalizing the tree-based approach and provide an approach to optimize the system performance.
为网络编码的开槽ALOHA编码
槽ALOHA可以从物理层网络编码(PNC)中获益,通过解码在一个时隙中同时传输的数据包的一个或多个线性组合,形成一个线性方程系统。在不同的时隙恢复不同的线性方程组。然后,通过联合求解在不同时隙上获得的多个线性方程组,消息解码器恢复所有用户的原始数据包。提出了一种将信念传播(BP)和局部高斯消去相结合的批量BP解码算法。与纯高斯消去译码相比,我们的算法将译码复杂度从用户数量的三次函数降低到线性函数。与普通的低密度生成矩阵码BP译码算法相比,该算法具有更好的译码性能和相同数量级的计算复杂度。我们通过推广基于树的方法分析了批处理BP解码算法的性能,并提供了一种优化系统性能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信