Transformer with Task Selection for Continual Learning

Sheng-Kai Huang, Chun-Rong Huang
{"title":"Transformer with Task Selection for Continual Learning","authors":"Sheng-Kai Huang, Chun-Rong Huang","doi":"10.23919/MVA57639.2023.10215673","DOIUrl":null,"url":null,"abstract":"The goal of continual learning is to let the models continuously learn the new incoming knowledge without catastrophic forgetting. To address this issue, we propose a transformer-based framework with the task selection module. The task selection module will select corresponding task tokens to assist the learning of incoming samples of new tasks. For previous samples, the selected task tokens can retain the previous knowledge to assist the prediction of samples of learned classes. Compared with the state-of-the-art methods, our method achieves good performance on the CIFAR-100 dataset especially for the testing of the last task to show that our method can better prevent catastrophic forgetting.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of continual learning is to let the models continuously learn the new incoming knowledge without catastrophic forgetting. To address this issue, we propose a transformer-based framework with the task selection module. The task selection module will select corresponding task tokens to assist the learning of incoming samples of new tasks. For previous samples, the selected task tokens can retain the previous knowledge to assist the prediction of samples of learned classes. Compared with the state-of-the-art methods, our method achieves good performance on the CIFAR-100 dataset especially for the testing of the last task to show that our method can better prevent catastrophic forgetting.
持续学习的任务选择转换器
持续学习的目标是让模型不断学习新传入的知识,而不会出现灾难性的遗忘。为了解决这个问题,我们提出了一个带有任务选择模块的基于转换器的框架。任务选择模块将选择相应的任务令牌,以帮助学习新任务的传入样本。对于以前的样本,选择的任务令牌可以保留以前的知识,以帮助预测学习类的样本。与目前最先进的方法相比,我们的方法在CIFAR-100数据集上取得了良好的性能,特别是在最后一个任务的测试中,表明我们的方法可以更好地防止灾难性遗忘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信