Combining multi-distributed mixture models and bayesian networks for semi-supervised learning

Manuel Stritt, L. Schmidt-Thieme, G. Poeppel
{"title":"Combining multi-distributed mixture models and bayesian networks for semi-supervised learning","authors":"Manuel Stritt, L. Schmidt-Thieme, G. Poeppel","doi":"10.1109/ICMLA.2007.31","DOIUrl":null,"url":null,"abstract":"In many real world scenarios, mixture models have successfully been used for analyzing features in data ([11, 13, 21]). Usually, multivariate Gaussian distributions for continuous data ([2, 8, 4]) or Bayesian networks for nominal data ([15, 16]) are applied. In this paper, we combine both approaches in a family of Bayesian models for continuous data that are able to handle univariate as well as multivariate nodes, different types of distributions, e.g. Gaussian as well as Poisson distributed nodes, and dependencies between nodes. The models we introduce can be used for unsupervised, semi-supervised as well as for fully supervised learning tasks. We evaluate our models empirically on generated synthetic data and on public datasets thereby showing that they outperform classifiers such as SVMs and logistic regression on mixture data.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In many real world scenarios, mixture models have successfully been used for analyzing features in data ([11, 13, 21]). Usually, multivariate Gaussian distributions for continuous data ([2, 8, 4]) or Bayesian networks for nominal data ([15, 16]) are applied. In this paper, we combine both approaches in a family of Bayesian models for continuous data that are able to handle univariate as well as multivariate nodes, different types of distributions, e.g. Gaussian as well as Poisson distributed nodes, and dependencies between nodes. The models we introduce can be used for unsupervised, semi-supervised as well as for fully supervised learning tasks. We evaluate our models empirically on generated synthetic data and on public datasets thereby showing that they outperform classifiers such as SVMs and logistic regression on mixture data.
结合多分布混合模型和贝叶斯网络进行半监督学习
在许多现实场景中,混合模型已经成功地用于分析数据中的特征([11,13,21])。通常,连续数据采用多元高斯分布([2,8,4]),标称数据采用贝叶斯网络([15,16])。在本文中,我们将这两种方法结合在一系列连续数据的贝叶斯模型中,这些模型能够处理单变量和多变量节点,不同类型的分布,例如高斯分布和泊松分布节点,以及节点之间的依赖关系。我们引入的模型可以用于无监督、半监督以及完全监督的学习任务。我们在生成的合成数据和公共数据集上对我们的模型进行了经验评估,从而表明它们在混合数据上优于svm和逻辑回归等分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信