Efficient estimation of 3D Euclidean distance fields from 2D range images

Sarah F. Frisken, R. N. Perry
{"title":"Efficient estimation of 3D Euclidean distance fields from 2D range images","authors":"Sarah F. Frisken, R. N. Perry","doi":"10.1109/SWG.2002.1226513","DOIUrl":null,"url":null,"abstract":"Several existing algorithms for reconstructing 3D models from range data first approximate the object's 3D distance field to provide an implicit representation of the scanned object and then construct a surface model of the object using this distance field. In these existing approaches, computing and storing 3D distance values from range data contribute significantly to the computational and storage requirements. This paper presents an efficient method for estimating the 3D Euclidean distance field from 2D range images that can be used by any of these algorithms. The proposed method uses Adaptively Sampled Distance Fields to minimize the number of distance evaluations and significantly reduce storage requirements of the sampled distance field. The method is fast because much of the computation required to convert the line-of-sight range distances to Euclidean distances can be done during a pre-processing step in the 2D coordinate space of each range image.","PeriodicalId":179293,"journal":{"name":"Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SWG.2002.1226513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Several existing algorithms for reconstructing 3D models from range data first approximate the object's 3D distance field to provide an implicit representation of the scanned object and then construct a surface model of the object using this distance field. In these existing approaches, computing and storing 3D distance values from range data contribute significantly to the computational and storage requirements. This paper presents an efficient method for estimating the 3D Euclidean distance field from 2D range images that can be used by any of these algorithms. The proposed method uses Adaptively Sampled Distance Fields to minimize the number of distance evaluations and significantly reduce storage requirements of the sampled distance field. The method is fast because much of the computation required to convert the line-of-sight range distances to Euclidean distances can be done during a pre-processing step in the 2D coordinate space of each range image.
从二维距离图像有效估计三维欧氏距离场
现有的几种从距离数据重建三维模型的算法首先近似物体的三维距离场,以提供扫描物体的隐式表示,然后使用该距离场构建物体的表面模型。在这些现有的方法中,计算和存储来自距离数据的三维距离值对计算和存储需求有很大贡献。本文提出了一种从二维距离图像中估计三维欧氏距离场的有效方法,该方法可用于任何一种算法。该方法采用自适应距离域采样,最大限度地减少了距离评估的次数,显著降低了采样距离域的存储需求。该方法速度快,因为将视距距离转换为欧氏距离所需的大部分计算可以在每个距离图像的二维坐标空间的预处理步骤中完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信