NEMESIS: A software approach for computing in presence of soft errors

Moslem Didehban, Aviral Shrivastava, Sai Ram Dheeraj Lokam
{"title":"NEMESIS: A software approach for computing in presence of soft errors","authors":"Moslem Didehban, Aviral Shrivastava, Sai Ram Dheeraj Lokam","doi":"10.1109/ICCAD.2017.8203792","DOIUrl":null,"url":null,"abstract":"Soft errors are considered as the main reliability challenge for sub-nanoscale microprocessors. Software-level soft error resilience schemes are desirable because they require no hardware modifications and their protection can be tuned based on the application requirements. However, existing software-level error tolerant schemes do not provide high-level of protection. In this work, we present NEMESIS — a compiler-level fine-grain soft error detection, diagnosis and recovery technique that can provide high degree of error-resiliency. NEMESIS runs three versions of computations and detects soft errors by checking the results of all memory write and branch operations. In the case of mismatch, NEMESIS recovery routine reverts the effect of error from the architectural state of the program and program resumes its normal execution. Our extensive μ-architectural-level fault injection experiments results show that NEMESIS transformation is able to detect all soft errors and recover from 97% of detected errors.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Soft errors are considered as the main reliability challenge for sub-nanoscale microprocessors. Software-level soft error resilience schemes are desirable because they require no hardware modifications and their protection can be tuned based on the application requirements. However, existing software-level error tolerant schemes do not provide high-level of protection. In this work, we present NEMESIS — a compiler-level fine-grain soft error detection, diagnosis and recovery technique that can provide high degree of error-resiliency. NEMESIS runs three versions of computations and detects soft errors by checking the results of all memory write and branch operations. In the case of mismatch, NEMESIS recovery routine reverts the effect of error from the architectural state of the program and program resumes its normal execution. Our extensive μ-architectural-level fault injection experiments results show that NEMESIS transformation is able to detect all soft errors and recover from 97% of detected errors.
NEMESIS:一种在存在软错误时进行计算的软件方法
软误差被认为是亚纳米微处理器可靠性面临的主要挑战。软件级别的软错误恢复方案是可取的,因为它们不需要修改硬件,而且它们的保护可以根据应用程序需求进行调优。然而,现有的软件级容错方案并没有提供高级别的保护。在这项工作中,我们提出了NEMESIS——一种编译器级别的细粒度软错误检测、诊断和恢复技术,可以提供高度的错误弹性。NEMESIS运行三个版本的计算,并通过检查所有内存写和分支操作的结果来检测软错误。在不匹配的情况下,NEMESIS恢复例程从程序的体系结构状态中恢复错误的影响,程序恢复其正常执行。我们广泛的μ架构级故障注入实验结果表明,NEMESIS变换能够检测到所有软错误,并从检测到的错误中恢复97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信