Analysis of completeness of laboratory assignment algorithm by abstract reduction systems theory

M. Noto, M. Kurihara, A. Ohuchi
{"title":"Analysis of completeness of laboratory assignment algorithm by abstract reduction systems theory","authors":"M. Noto, M. Kurihara, A. Ohuchi","doi":"10.1109/SICE.1995.526651","DOIUrl":null,"url":null,"abstract":"A laboratory assignment algorithm is a procedure that assigns each of the m students to one of the n laboratories. In this paper, we prove the completeness (i.e., termination and confluence) of the algorithm by using the abstract reduction systems theory. Termination guarantees that the computation will not proceed indefinitely, and confluence guarantees that the computational result is unique even in the presence of indeterminacy.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A laboratory assignment algorithm is a procedure that assigns each of the m students to one of the n laboratories. In this paper, we prove the completeness (i.e., termination and confluence) of the algorithm by using the abstract reduction systems theory. Termination guarantees that the computation will not proceed indefinitely, and confluence guarantees that the computational result is unique even in the presence of indeterminacy.
用抽象约简系统理论分析实验室分配算法的完备性
实验室分配算法是将m名学生分配到n个实验室中的一个的过程。本文利用抽象约简系统理论证明了该算法的完备性(即终止性和合流性)。终止保证了计算不会无限地进行,汇合保证了即使存在不确定性,计算结果也是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信