Improvement of Vegetation Water Content Estimation Over the Tibetan Plateau Using Field Measurements

Menglei Han, Hui Lu, Kun Yang, Jiancheng Shi
{"title":"Improvement of Vegetation Water Content Estimation Over the Tibetan Plateau Using Field Measurements","authors":"Menglei Han, Hui Lu, Kun Yang, Jiancheng Shi","doi":"10.1109/MICRORAD.2018.8430707","DOIUrl":null,"url":null,"abstract":"Vegetation water content (VWC) plays a significant role in the retrieval of soil moisture using microwave remote sensing, which further supports applications such as weather forecasting, flood prediction, and landslide early-warning. In the current SMAP algorithm, the commonly used vegetation index (i.e., the NDVI) was utilized to determine the VWC. This study evaluates the accuracy of SMAP VWC product, together with other Jackson's algorithm using NDVI and Paloscia's method using LAI. Comparing to ground observation, SMAP overestimates VWC, while Jackson's method, in which stem factor is not included, performs better than other two. By using Jackson's method, we found the accuracy of soil moisture retrieved from SMAP could be improved.","PeriodicalId":423162,"journal":{"name":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRORAD.2018.8430707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vegetation water content (VWC) plays a significant role in the retrieval of soil moisture using microwave remote sensing, which further supports applications such as weather forecasting, flood prediction, and landslide early-warning. In the current SMAP algorithm, the commonly used vegetation index (i.e., the NDVI) was utilized to determine the VWC. This study evaluates the accuracy of SMAP VWC product, together with other Jackson's algorithm using NDVI and Paloscia's method using LAI. Comparing to ground observation, SMAP overestimates VWC, while Jackson's method, in which stem factor is not included, performs better than other two. By using Jackson's method, we found the accuracy of soil moisture retrieved from SMAP could be improved.
利用野外测量改进青藏高原植被含水量估算方法
植被含水量(VWC)在微波遥感反演土壤水分中发挥着重要作用,为气象预报、洪水预报、滑坡预警等应用提供了支撑。在目前的SMAP算法中,采用了常用的植被指数(即NDVI)来确定VWC。本研究评估了SMAP VWC产品的准确性,并结合其他Jackson's算法使用NDVI和Paloscia方法使用LAI。与地面观测相比,SMAP高估了VWC,而Jackson的方法在不考虑干因子的情况下,表现优于其他两种方法。采用Jackson方法,可以提高SMAP反演土壤水分的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信