Learning a discriminative feature for object detection based on feature fusing and context learning

You Lei, Hongpeng Wang, Y. Wang
{"title":"Learning a discriminative feature for object detection based on feature fusing and context learning","authors":"You Lei, Hongpeng Wang, Y. Wang","doi":"10.1109/SPAC.2017.8304337","DOIUrl":null,"url":null,"abstract":"Object detection is one of the most challenging tasks in the field of computer vision. It is widely used in traffic sign detection[1], pedestrian detection[2,3], person re-identification[4], object tracking[5,6,7] and so on[8,9]. Although convolutional neural network (CNN)-based algorithms have made great achievements in this field, object detection still suffers from illumination changes, occlusion, intraclass differences, etc.[10]. Candidate bounding box generation methods and feature extraction methods also influence the final detection result. In this paper, we propose a discriminative feature extraction method based on feature fusion and context learning.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection is one of the most challenging tasks in the field of computer vision. It is widely used in traffic sign detection[1], pedestrian detection[2,3], person re-identification[4], object tracking[5,6,7] and so on[8,9]. Although convolutional neural network (CNN)-based algorithms have made great achievements in this field, object detection still suffers from illumination changes, occlusion, intraclass differences, etc.[10]. Candidate bounding box generation methods and feature extraction methods also influence the final detection result. In this paper, we propose a discriminative feature extraction method based on feature fusion and context learning.
学习一种基于特征融合和上下文学习的判别特征用于目标检测
目标检测是计算机视觉领域最具挑战性的任务之一。广泛应用于交通标志检测[1]、行人检测[2,3]、人再识别[4]、目标跟踪[5,6,7]等[8,9]。尽管基于卷积神经网络(convolutional neural network, CNN)的算法在这一领域取得了很大的成就,但物体检测仍然存在光照变化、遮挡、类内差异等问题[10]。候选边界框生成方法和特征提取方法也会影响最终的检测结果。本文提出了一种基于特征融合和上下文学习的判别特征提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信