{"title":"TBPoint: Reducing Simulation Time for Large-Scale GPGPU Kernels","authors":"Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, H. Lee","doi":"10.1109/IPDPS.2014.53","DOIUrl":null,"url":null,"abstract":"Architecture simulation for GPGPU kernels can take a significant amount of time, especially for large-scale GPGPU kernels. This paper presents TBPoint, an infrastructure based on profiling-based sampling for GPGPU kernels to reduce the cycle-level simulation time. Compared to existing approaches, TBPoint provides a flexible and architecture-independent way to take samples. For the evaluated 12 kernels, the geometric means of sampling errors of TBPoint, Ideal-Simpoint, and random sampling are 0.47%, 1.74%, and 7.95%, respectively, while the geometric means of the total sample size of TBPoint, Ideal-Simpoint, and random sampling are 2.6%, 5.4%, and 10%, respectively. TBPoint narrows the speed gap between hardware and GPGPU simulators, enabling more and more large-scale GPGPU kernels to be analyzed using detailed timing simulations.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Architecture simulation for GPGPU kernels can take a significant amount of time, especially for large-scale GPGPU kernels. This paper presents TBPoint, an infrastructure based on profiling-based sampling for GPGPU kernels to reduce the cycle-level simulation time. Compared to existing approaches, TBPoint provides a flexible and architecture-independent way to take samples. For the evaluated 12 kernels, the geometric means of sampling errors of TBPoint, Ideal-Simpoint, and random sampling are 0.47%, 1.74%, and 7.95%, respectively, while the geometric means of the total sample size of TBPoint, Ideal-Simpoint, and random sampling are 2.6%, 5.4%, and 10%, respectively. TBPoint narrows the speed gap between hardware and GPGPU simulators, enabling more and more large-scale GPGPU kernels to be analyzed using detailed timing simulations.