Assessing Sensitivity to Unconfoundedness: Estimation and Inference

Matthew A. Masten, Alexandre Poirier, Linqi Zhang
{"title":"Assessing Sensitivity to Unconfoundedness: Estimation and Inference","authors":"Matthew A. Masten, Alexandre Poirier, Linqi Zhang","doi":"10.1080/07350015.2023.2183212","DOIUrl":null,"url":null,"abstract":"This paper provides a set of methods for quantifying the robustness of treatment effects estimated using the unconfoundedness assumption (also known as selection on observables or conditional independence). Specifically, we estimate and do inference on bounds on various treatment effect parameters, like the average treatment effect (ATE) and the average effect of treatment on the treated (ATT), under nonparametric relaxations of the unconfoundedness assumption indexed by a scalar sensitivity parameter c. These relaxations allow for limited selection on unobservables, depending on the value of c. For large enough c, these bounds equal the no assumptions bounds. Using a non-standard bootstrap method, we show how to construct confidence bands for these bound functions which are uniform over all values of c. We illustrate these methods with an empirical application to effects of the National Supported Work Demonstration program. We implement these methods in a companion Stata module for easy use in practice. Classification- C14, C18, C21, C51","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2183212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper provides a set of methods for quantifying the robustness of treatment effects estimated using the unconfoundedness assumption (also known as selection on observables or conditional independence). Specifically, we estimate and do inference on bounds on various treatment effect parameters, like the average treatment effect (ATE) and the average effect of treatment on the treated (ATT), under nonparametric relaxations of the unconfoundedness assumption indexed by a scalar sensitivity parameter c. These relaxations allow for limited selection on unobservables, depending on the value of c. For large enough c, these bounds equal the no assumptions bounds. Using a non-standard bootstrap method, we show how to construct confidence bands for these bound functions which are uniform over all values of c. We illustrate these methods with an empirical application to effects of the National Supported Work Demonstration program. We implement these methods in a companion Stata module for easy use in practice. Classification- C14, C18, C21, C51
评估对非混杂性的敏感性:估计和推断
本文提供了一套方法来量化治疗效果的稳健性估计使用无混杂假设(也称为选择对可观察或条件独立性)。具体来说,我们在由标量灵敏度参数c索引的无混杂假设的非参数松弛下估计和推断各种治疗效果参数的界限,如平均治疗效果(ATE)和治疗对被治疗者的平均效果(ATT)。这些松弛允许对不可观测值进行有限的选择,取决于c的值。对于足够大的c,这些界限等于无假设界限。使用非标准的自举方法,我们展示了如何为这些限定函数构建置信带,这些函数在c的所有值上是一致的。我们通过对国家支持工作示范计划效果的经验应用来说明这些方法。为了便于在实践中使用,我们在Stata模块中实现了这些方法。分类- C14, C18, C21, C51
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信