Yong-hua Chen, Schlumberger, R. Bloemenkamp, Peter Schlicht, Lin Liang, L. Comparon
{"title":"INVERSION-BASED MEASUREMENT INTERPRETATION OF A NEW THROUGH-THE-BIT OBM PHOTOREALISTIC BOREHOLE IMAGER","authors":"Yong-hua Chen, Schlumberger, R. Bloemenkamp, Peter Schlicht, Lin Liang, L. Comparon","doi":"10.30632/spwla-2021-0080","DOIUrl":null,"url":null,"abstract":"A new 2 1/8-in. outer-diameter photorealistic imager for oil-based muds (OBM) has recently started field testing in unconventional formations in North America. To obtain the best interpretation of its measurements, a two-step quantitative inversion workflow has been developed with a performance similar to the existing inversion workflows for the regular high-definition OBM imagers. The new inversion workflow provides borehole resistivity images, borehole rugosity images, and borehole dielectric permittivity images as well as multiple quality curves. The modeling of the new borehole imager is performed with a 2D axisymmetric finite element code. An efficient forward model is developed by fitting the tool response tables into fourth-order polynomials in terms of the sensor standoff, formation, and mud impedivities for broad ranges of model parameters. The fast forward model based on the polynomial fitting is calibrated against the actual tool measurements in a laboratory setup and applied in the inversion algorithms. The inversion workflow is tested with synthetic data and the inverted model parameters are compared with their true values to study and analyze their corresponding measurement sensitivity and optimize the inversion input parameters. It is used to invert several field test datasets in unconventional wells. The results show that the inversion results provide critical added value for formation evaluation, showing geological features that would otherwise be missed, such as fracture properties. Projection-based formation impedivity images, as available for the regular high-definition OBM imagers, are ideal for conductive formations but suffer from a rollover effect in resistive formations. In comparison, the image formed from the inverted formation resistivity does not roll over and is more consistent for resistive formations. The image formed by the inverted standoff reflects surface conditions of the borehole and can be used to interpret whether the fractures and the faults are open, closed, or damaged in the drilling process. Multiple image examples are given from unconventional wells to demonstrate that the inverted standoff image can reveal fractures when there is insufficient or even no contrast in medium properties. The inverted standoff image also serves as a diagnostic tool for interpreting borehole and tool conditions during the measurements. The inverted permittivity may have a larger dynamic range than the resistivity especially for unconventional formations, thus providing an alternative and potentially clearer borehole image.","PeriodicalId":153712,"journal":{"name":"SPWLA 62nd Annual Online Symposium Transactions","volume":"27 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPWLA 62nd Annual Online Symposium Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/spwla-2021-0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A new 2 1/8-in. outer-diameter photorealistic imager for oil-based muds (OBM) has recently started field testing in unconventional formations in North America. To obtain the best interpretation of its measurements, a two-step quantitative inversion workflow has been developed with a performance similar to the existing inversion workflows for the regular high-definition OBM imagers. The new inversion workflow provides borehole resistivity images, borehole rugosity images, and borehole dielectric permittivity images as well as multiple quality curves. The modeling of the new borehole imager is performed with a 2D axisymmetric finite element code. An efficient forward model is developed by fitting the tool response tables into fourth-order polynomials in terms of the sensor standoff, formation, and mud impedivities for broad ranges of model parameters. The fast forward model based on the polynomial fitting is calibrated against the actual tool measurements in a laboratory setup and applied in the inversion algorithms. The inversion workflow is tested with synthetic data and the inverted model parameters are compared with their true values to study and analyze their corresponding measurement sensitivity and optimize the inversion input parameters. It is used to invert several field test datasets in unconventional wells. The results show that the inversion results provide critical added value for formation evaluation, showing geological features that would otherwise be missed, such as fracture properties. Projection-based formation impedivity images, as available for the regular high-definition OBM imagers, are ideal for conductive formations but suffer from a rollover effect in resistive formations. In comparison, the image formed from the inverted formation resistivity does not roll over and is more consistent for resistive formations. The image formed by the inverted standoff reflects surface conditions of the borehole and can be used to interpret whether the fractures and the faults are open, closed, or damaged in the drilling process. Multiple image examples are given from unconventional wells to demonstrate that the inverted standoff image can reveal fractures when there is insufficient or even no contrast in medium properties. The inverted standoff image also serves as a diagnostic tool for interpreting borehole and tool conditions during the measurements. The inverted permittivity may have a larger dynamic range than the resistivity especially for unconventional formations, thus providing an alternative and potentially clearer borehole image.