Spoofing Face Identification Using Higher order Descriptors

Balaji Rao Katika, P. Hajare, Ravi Mishra, Kamal Kashyap
{"title":"Spoofing Face Identification Using Higher order Descriptors","authors":"Balaji Rao Katika, P. Hajare, Ravi Mishra, Kamal Kashyap","doi":"10.1109/ICETET-SIP-1946815.2019.9092301","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel higher order descriptors as Local Derivative Pattern(LDP), for face liveliness detection. We uses LDP frame work as directional descriptors based on change in texture of face. The nth order LDP descriptors are proposed to encode (n − 1)th directional derivatives to identify the texture for different kinds of face attack. LDP captures more detail information compare to first order LBP approach. We use LDP descriptor of derivatives order n = (2, 3, 4) and histogram bins are computed to form directional features for both genuine and different kinds of attack faces. An Multi layer perceptron (MLP) as week learner used for identification of genuine and attack face. Performance is evaluated by using MS-MSU database which consists of real genuine face and different kinds of attack face.","PeriodicalId":200787,"journal":{"name":"2019 9th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-19)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-19)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel higher order descriptors as Local Derivative Pattern(LDP), for face liveliness detection. We uses LDP frame work as directional descriptors based on change in texture of face. The nth order LDP descriptors are proposed to encode (n − 1)th directional derivatives to identify the texture for different kinds of face attack. LDP captures more detail information compare to first order LBP approach. We use LDP descriptor of derivatives order n = (2, 3, 4) and histogram bins are computed to form directional features for both genuine and different kinds of attack faces. An Multi layer perceptron (MLP) as week learner used for identification of genuine and attack face. Performance is evaluated by using MS-MSU database which consists of real genuine face and different kinds of attack face.
基于高阶描述符的欺骗人脸识别
本文提出了一种新的高阶描述子——局部导数模式(LDP),用于人脸活力检测。基于人脸纹理的变化,采用LDP框架作为方向描述符。提出了对(n−1)个方向导数进行编码的第n阶LDP描述符,用于识别不同类型面部攻击的纹理。与一阶LBP方法相比,LDP捕获更多的详细信息。我们使用导数阶数为n =(2,3,4)的LDP描述子,并计算直方图箱来形成真实攻击面和不同类型攻击面的方向特征。将多层感知器(MLP)作为周学习器用于真实人脸和攻击人脸的识别。利用MS-MSU数据库对系统进行性能评估,该数据库由真实的真实人脸和不同类型的攻击人脸组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信