A. Garcia, Dalvan Griebler, C. Schepke, André Sacilotto Santos, José Daniel García Sánchez, Javier Fernández Muñoz, L. G. Fernandes
{"title":"A Latency, Throughput, and Programmability Perspective of GrPPI for Streaming on Multi-cores","authors":"A. Garcia, Dalvan Griebler, C. Schepke, André Sacilotto Santos, José Daniel García Sánchez, Javier Fernández Muñoz, L. G. Fernandes","doi":"10.1109/PDP59025.2023.00033","DOIUrl":null,"url":null,"abstract":"Several solutions aim to simplify the burdening task of parallel programming. The GrPPI library is one of them. It allows users to implement parallel code for multiple backends through a unified, abstract, and generic layer while promising minimal overhead on performance. An outspread evaluation of GrPPI regarding stream parallelism with representative metrics for this domain, such as throughput and latency, was not yet done. In this work, we evaluate GrPPI focused on stream processing. We evaluate performance, memory usage, and programming effort and compare them against handwritten parallel code. For this, we use the benchmarking framework SPBench to build custom GrPPI benchmarks. The basis of the benchmarks is real applications, such as Lane Detection, Bzip2, Face Recognizer, and Ferret. Experiments show that while performance is competitive with handwritten code in some cases, in other cases, the infeasibility of fine-tuning GrPPI is a crucial drawback. Despite this, programmability experiments estimate that GrPPI has the potential to reduce by about three times the development time of parallel applications.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Several solutions aim to simplify the burdening task of parallel programming. The GrPPI library is one of them. It allows users to implement parallel code for multiple backends through a unified, abstract, and generic layer while promising minimal overhead on performance. An outspread evaluation of GrPPI regarding stream parallelism with representative metrics for this domain, such as throughput and latency, was not yet done. In this work, we evaluate GrPPI focused on stream processing. We evaluate performance, memory usage, and programming effort and compare them against handwritten parallel code. For this, we use the benchmarking framework SPBench to build custom GrPPI benchmarks. The basis of the benchmarks is real applications, such as Lane Detection, Bzip2, Face Recognizer, and Ferret. Experiments show that while performance is competitive with handwritten code in some cases, in other cases, the infeasibility of fine-tuning GrPPI is a crucial drawback. Despite this, programmability experiments estimate that GrPPI has the potential to reduce by about three times the development time of parallel applications.