{"title":"EEG channel selection algorithm based on Reinforcement Learning","authors":"Yingxin Jin, Shaohua Shang, Liwei Tang, Lianzhua He, Mengchu Zhou","doi":"10.1109/ICNSC55942.2022.10004161","DOIUrl":null,"url":null,"abstract":"Multichannel EEG is generally used to collect brain activities from various locations across the brain. However, BCIs using lesser channels will be more convenient for subjects. What's more, information acquired from adjacent channels is usually inter-correlated or irrelevant to the task. And some channels are noisy. This paper proposes a novel channel selection algorithm based on reinforcement learning. It can adaptively transform the full-channel EEG data to the optimal-channel-number EEG format conditioned on different input trials to make a trade-off between brain decoding accuracy and efficiency. Experimen-tal results showed that the proposed model can improve the classification accuracy by 2% ~ 6% compared to channel set $\\{C3,C4,Cz\\}$.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multichannel EEG is generally used to collect brain activities from various locations across the brain. However, BCIs using lesser channels will be more convenient for subjects. What's more, information acquired from adjacent channels is usually inter-correlated or irrelevant to the task. And some channels are noisy. This paper proposes a novel channel selection algorithm based on reinforcement learning. It can adaptively transform the full-channel EEG data to the optimal-channel-number EEG format conditioned on different input trials to make a trade-off between brain decoding accuracy and efficiency. Experimen-tal results showed that the proposed model can improve the classification accuracy by 2% ~ 6% compared to channel set $\{C3,C4,Cz\}$.