Face Duplication Identifier Using Artificial Nerves

bit-Tech Pub Date : 2023-08-25 DOI:10.32877/bt.v6i1.899
S. R. C. Nursari, Rizki Rahmatunisa
{"title":"Face Duplication Identifier Using Artificial Nerves","authors":"S. R. C. Nursari, Rizki Rahmatunisa","doi":"10.32877/bt.v6i1.899","DOIUrl":null,"url":null,"abstract":"The facial recognition system develops a basic identity verification system based on the natural features of human faces. The study included duplicate passport identification, which checks each person's facial accuracy through a sample of facial data. The data used in this study were 180 face samples at the training stage and 30 face samples at the testing stage. The face sample taken is a forward-facing face that is not obstructed by an object. Face image recognition in this study combines GLCM method, color moment, shape extraction and backpropagation algorithm. The test process recognition rate is 78.83%.","PeriodicalId":405015,"journal":{"name":"bit-Tech","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bit-Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32877/bt.v6i1.899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The facial recognition system develops a basic identity verification system based on the natural features of human faces. The study included duplicate passport identification, which checks each person's facial accuracy through a sample of facial data. The data used in this study were 180 face samples at the training stage and 30 face samples at the testing stage. The face sample taken is a forward-facing face that is not obstructed by an object. Face image recognition in this study combines GLCM method, color moment, shape extraction and backpropagation algorithm. The test process recognition rate is 78.83%.
基于人工神经的人脸重复识别
人脸识别系统基于人脸的自然特征,开发了一个基本的身份验证系统。这项研究包括了重复的护照识别,通过面部数据样本来检查每个人的面部准确性。本研究使用的数据为180张训练阶段的人脸样本和30张测试阶段的人脸样本。所采集的面部样本为未被物体遮挡的正面面部。本研究中人脸图像识别结合了GLCM方法、颜色矩、形状提取和反向传播算法。测试过程识别率为78.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信